These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

360 related articles for article (PubMed ID: 30547218)

  • 1. Enhanced anti-tumor efficacy of checkpoint inhibitors in combination with the histone deacetylase inhibitor Belinostat in a murine hepatocellular carcinoma model.
    Llopiz D; Ruiz M; Villanueva L; Iglesias T; Silva L; Egea J; Lasarte JJ; Pivette P; Trochon-Joseph V; Vasseur B; Dixon G; Sangro B; Sarobe P
    Cancer Immunol Immunother; 2019 Mar; 68(3):379-393. PubMed ID: 30547218
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antibodies Against Immune Checkpoint Molecules Restore Functions of Tumor-Infiltrating T Cells in Hepatocellular Carcinomas.
    Zhou G; Sprengers D; Boor PPC; Doukas M; Schutz H; Mancham S; Pedroza-Gonzalez A; Polak WG; de Jonge J; Gaspersz M; Dong H; Thielemans K; Pan Q; IJzermans JNM; Bruno MJ; Kwekkeboom J
    Gastroenterology; 2017 Oct; 153(4):1107-1119.e10. PubMed ID: 28648905
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Next Immune-Checkpoint Inhibitors: PD-1/PD-L1 Blockade in Melanoma.
    Mahoney KM; Freeman GJ; McDermott DF
    Clin Ther; 2015 Apr; 37(4):764-82. PubMed ID: 25823918
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of regulatory T cells and checkpoint inhibition in hepatocellular carcinoma.
    Langhans B; Nischalke HD; Krämer B; Dold L; Lutz P; Mohr R; Vogt A; Toma M; Eis-Hübinger AM; Nattermann J; Strassburg CP; Gonzalez-Carmona MA; Spengler U
    Cancer Immunol Immunother; 2019 Dec; 68(12):2055-2066. PubMed ID: 31724091
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Radiation improves antitumor effect of immune checkpoint inhibitor in murine hepatocellular carcinoma model.
    Kim KJ; Kim JH; Lee SJ; Lee EJ; Shin EC; Seong J
    Oncotarget; 2017 Jun; 8(25):41242-41255. PubMed ID: 28465485
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Indoleamine 2,3-dioxygenase provides adaptive resistance to immune checkpoint inhibitors in hepatocellular carcinoma.
    Brown ZJ; Yu SJ; Heinrich B; Ma C; Fu Q; Sandhu M; Agdashian D; Zhang Q; Korangy F; Greten TF
    Cancer Immunol Immunother; 2018 Aug; 67(8):1305-1315. PubMed ID: 29959458
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glioblastoma Eradication Following Immune Checkpoint Blockade in an Orthotopic, Immunocompetent Model.
    Reardon DA; Gokhale PC; Klein SR; Ligon KL; Rodig SJ; Ramkissoon SH; Jones KL; Conway AS; Liao X; Zhou J; Wen PY; Van Den Abbeele AD; Hodi FS; Qin L; Kohl NE; Sharpe AH; Dranoff G; Freeman GJ
    Cancer Immunol Res; 2016 Feb; 4(2):124-35. PubMed ID: 26546453
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeting CD73 enhances the antitumor activity of anti-PD-1 and anti-CTLA-4 mAbs.
    Allard B; Pommey S; Smyth MJ; Stagg J
    Clin Cancer Res; 2013 Oct; 19(20):5626-35. PubMed ID: 23983257
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental in vivo and in vitro treatment with a new histone deacetylase inhibitor belinostat inhibits the growth of pancreatic cancer.
    Dovzhanskiy DI; Arnold SM; Hackert T; Oehme I; Witt O; Felix K; Giese N; Werner J
    BMC Cancer; 2012 Jun; 12():226. PubMed ID: 22681698
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual Programmed Death Receptor-1 and Vascular Endothelial Growth Factor Receptor-2 Blockade Promotes Vascular Normalization and Enhances Antitumor Immune Responses in Hepatocellular Carcinoma.
    Shigeta K; Datta M; Hato T; Kitahara S; Chen IX; Matsui A; Kikuchi H; Mamessier E; Aoki S; Ramjiawan RR; Ochiai H; Bardeesy N; Huang P; Cobbold M; Zhu AX; Jain RK; Duda DG
    Hepatology; 2020 Apr; 71(4):1247-1261. PubMed ID: 31378984
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combination treatment of renal cell carcinoma with belinostat and 5-fluorouracil: a role for oxidative stress induced DNA damage and HSP90 regulated thymidine synthase.
    Kim MJ; Lee JS; Park SE; Yi HJ; Jeong IG; Kang JS; Yun J; Lee JY; Ro S; Lee JS; Choi EK; Hwang JJ; Kim CS
    J Urol; 2015 May; 193(5):1660-8. PubMed ID: 25433307
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeting interferon signaling and CTLA-4 enhance the therapeutic efficacy of anti-PD-1 immunotherapy in preclinical model of HPV
    Dorta-Estremera S; Hegde VL; Slay RB; Sun R; Yanamandra AV; Nicholas C; Nookala S; Sierra G; Curran MA; Sastry KJ
    J Immunother Cancer; 2019 Sep; 7(1):252. PubMed ID: 31533840
    [TBL] [Abstract][Full Text] [Related]  

  • 13. HDAC6 Inhibition Alleviates CLL-Induced T-Cell Dysfunction and Enhances Immune Checkpoint Blockade Efficacy in the Eμ-TCL1 Model.
    Maharaj K; Powers JJ; Mediavilla-Varela M; Achille A; Gamal W; Quayle S; Jones SS; Sahakian E; Pinilla-Ibarz J
    Front Immunol; 2020; 11():590072. PubMed ID: 33329575
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual CTLA-4 and PD-L1 Blockade Inhibits Tumor Growth and Liver Metastasis in a Highly Aggressive Orthotopic Mouse Model of Colon Cancer.
    Fiegle E; Doleschel D; Koletnik S; Rix A; Weiskirchen R; Borkham-Kamphorst E; Kiessling F; Lederle W
    Neoplasia; 2019 Sep; 21(9):932-944. PubMed ID: 31412307
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual blockade of PD-1 and CTLA-4 combined with tumor vaccine effectively restores T-cell rejection function in tumors.
    Duraiswamy J; Kaluza KM; Freeman GJ; Coukos G
    Cancer Res; 2013 Jun; 73(12):3591-603. PubMed ID: 23633484
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Age effects of distinct immune checkpoint blockade treatments in a mouse melanoma model.
    Padrón Á; Hurez V; Gupta HB; Clark CA; Pandeswara SL; Yuan B; Svatek RS; Turk MJ; Drerup JM; Li R; Curiel TJ
    Exp Gerontol; 2018 May; 105():146-154. PubMed ID: 29326088
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Blockade of PD-1 and CTLA-4: A potent immunotherapeutic approach for hepatocellular carcinoma.
    Hou K; Xu X; Ge X; Jiang J; Ouyang F
    Biofactors; 2024; 50(2):250-265. PubMed ID: 37921427
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immune checkpoint Ab enhances the antigen-specific anti-tumor effects by modulating both dendritic cells and regulatory T lymphocytes.
    Sun NY; Chen YL; Lin HW; Chiang YC; Chang CF; Tai YJ; Chen CA; Sun WZ; Chien CL; Cheng WF
    Cancer Lett; 2019 Mar; 444():20-34. PubMed ID: 30543813
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Current landscape and future of dual anti-CTLA4 and PD-1/PD-L1 blockade immunotherapy in cancer; lessons learned from clinical trials with melanoma and non-small cell lung cancer (NSCLC).
    Chae YK; Arya A; Iams W; Cruz MR; Chandra S; Choi J; Giles F
    J Immunother Cancer; 2018 May; 6(1):39. PubMed ID: 29769148
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of immune responses to anti-PD-1 mono and combination immunotherapy in hematopoietic humanized mice implanted with tumor xenografts.
    Capasso A; Lang J; Pitts TM; Jordan KR; Lieu CH; Davis SL; Diamond JR; Kopetz S; Barbee J; Peterson J; Freed BM; Yacob BW; Bagby SM; Messersmith WA; Slansky JE; Pelanda R; Eckhardt SG
    J Immunother Cancer; 2019 Feb; 7(1):37. PubMed ID: 30736857
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.