These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 30547240)

  • 1. Mining the natural genetic variation in Arabidopsis thaliana for adaptation to sequential abiotic and biotic stresses.
    Coolen S; Van Pelt JA; Van Wees SCM; Pieterse CMJ
    Planta; 2019 Apr; 249(4):1087-1105. PubMed ID: 30547240
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of prior drought and pathogen stress on Arabidopsis transcriptome changes to caterpillar herbivory.
    Davila Olivas NH; Coolen S; Huang P; Severing E; van Verk MC; Hickman R; Wittenberg AH; de Vos M; Prins M; van Loon JJ; Aarts MG; van Wees SC; Pieterse CM; Dicke M
    New Phytol; 2016 Jun; 210(4):1344-56. PubMed ID: 26847575
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-wide association analysis reveals distinct genetic architectures for single and combined stress responses in Arabidopsis thaliana.
    Davila Olivas NH; Kruijer W; Gort G; Wijnen CL; van Loon JJ; Dicke M
    New Phytol; 2017 Jan; 213(2):838-851. PubMed ID: 27604707
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Natural variation in life history strategy of Arabidopsis thaliana determines stress responses to drought and insects of different feeding guilds.
    Davila Olivas NH; Frago E; Thoen MPM; Kloth KJ; Becker FFM; van Loon JJA; Gort G; Keurentjes JJB; van Heerwaarden J; Dicke M
    Mol Ecol; 2017 Jun; 26(11):2959-2977. PubMed ID: 28295823
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptome dynamics of Arabidopsis during sequential biotic and abiotic stresses.
    Coolen S; Proietti S; Hickman R; Davila Olivas NH; Huang PP; Van Verk MC; Van Pelt JA; Wittenberg AH; De Vos M; Prins M; Van Loon JJ; Aarts MG; Dicke M; Pieterse CM; Van Wees SC
    Plant J; 2016 May; 86(3):249-67. PubMed ID: 26991768
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of Arabidopsis candidate genes in response to biotic and abiotic stresses using comparative microarrays.
    Sham A; Moustafa K; Al-Ameri S; Al-Azzawi A; Iratni R; AbuQamar S
    PLoS One; 2015; 10(5):e0125666. PubMed ID: 25933420
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complex genetics control natural variation in Arabidopsis thaliana resistance to Botrytis cinerea.
    Rowe HC; Kliebenstein DJ
    Genetics; 2008 Dec; 180(4):2237-50. PubMed ID: 18845849
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metatranscriptomic Analysis of Multiple Environmental Stresses Identifies RAP2.4 Gene Associated with Arabidopsis Immunity to Botrytis cinerea.
    Sham A; Al-Ashram H; Whitley K; Iratni R; El-Tarabily KA; AbuQamar SF
    Sci Rep; 2019 Nov; 9(1):17010. PubMed ID: 31740741
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-wide association analysis reveals genes controlling an antagonistic effect of biotic and osmotic stress on Arabidopsis thaliana growth.
    Huang P; El-Soda M; Wolinska KW; Zhao K; Davila Olivas NH; van Loon JJA; Dicke M; Aarts MGM
    Mol Plant Pathol; 2024 Mar; 25(3):e13436. PubMed ID: 38460112
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic architecture of plant stress resistance: multi-trait genome-wide association mapping.
    Thoen MP; Davila Olivas NH; Kloth KJ; Coolen S; Huang PP; Aarts MG; Bac-Molenaar JA; Bakker J; Bouwmeester HJ; Broekgaarden C; Bucher J; Busscher-Lange J; Cheng X; Fradin EF; Jongsma MA; Julkowska MM; Keurentjes JJ; Ligterink W; Pieterse CM; Ruyter-Spira C; Smant G; Testerink C; Usadel B; van Loon JJ; van Pelt JA; van Schaik CC; van Wees SC; Visser RG; Voorrips R; Vosman B; Vreugdenhil D; Warmerdam S; Wiegers GL; van Heerwaarden J; Kruijer W; van Eeuwijk FA; Dicke M
    New Phytol; 2017 Feb; 213(3):1346-1362. PubMed ID: 27699793
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A complex network of additive and epistatic quantitative trait loci underlies natural variation of Arabidopsis thaliana quantitative disease resistance to Ralstonia solanacearum under heat stress.
    Aoun N; Desaint H; Boyrie L; Bonhomme M; Deslandes L; Berthomé R; Roux F
    Mol Plant Pathol; 2020 Nov; 21(11):1405-1420. PubMed ID: 32914940
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptome analysis reveals genes commonly induced by Botrytis cinerea infection, cold, drought and oxidative stresses in Arabidopsis.
    Sham A; Al-Azzawi A; Al-Ameri S; Al-Mahmoud B; Awwad F; Al-Rawashdeh A; Iratni R; AbuQamar S
    PLoS One; 2014; 9(11):e113718. PubMed ID: 25422934
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A mutation in the expansin-like A2 gene enhances resistance to necrotrophic fungi and hypersensitivity to abiotic stress in Arabidopsis thaliana.
    Abuqamar S; Ajeb S; Sham A; Enan MR; Iratni R
    Mol Plant Pathol; 2013 Oct; 14(8):813-27. PubMed ID: 23782466
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Digital Imaging Combined with Genome-Wide Association Mapping Links Loci to Plant-Pathogen Interaction Traits.
    Fordyce RF; Soltis NE; Caseys C; Gwinner R; Corwin JA; Atwell S; Copeland D; Feusier J; Subedy A; Eshbaugh R; Kliebenstein DJ
    Plant Physiol; 2018 Nov; 178(3):1406-1422. PubMed ID: 30266748
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A wheat lipid transfer protein (TdLTP4) promotes tolerance to abiotic and biotic stress in Arabidopsis thaliana.
    Safi H; Saibi W; Alaoui MM; Hmyene A; Masmoudi K; Hanin M; Brini F
    Plant Physiol Biochem; 2015 Apr; 89():64-75. PubMed ID: 25703105
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-wide association study reveals novel players in defense hormone crosstalk in Arabidopsis.
    Proietti S; Caarls L; Coolen S; Van Pelt JA; Van Wees SCM; Pieterse CMJ
    Plant Cell Environ; 2018 Oct; 41(10):2342-2356. PubMed ID: 29852537
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The glutaredoxin ATGRXS13 is required to facilitate Botrytis cinerea infection of Arabidopsis thaliana plants.
    La Camera S; L'haridon F; Astier J; Zander M; Abou-Mansour E; Page G; Thurow C; Wendehenne D; Gatz C; Métraux JP; Lamotte O
    Plant J; 2011 Nov; 68(3):507-19. PubMed ID: 21756272
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative trait loci and candidate genes underlying genotype by environment interaction in the response of Arabidopsis thaliana to drought.
    El-Soda M; Kruijer W; Malosetti M; Koornneef M; Aarts MG
    Plant Cell Environ; 2015 Mar; 38(3):585-99. PubMed ID: 25074022
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rosette core fungal resistance in Arabidopsis thaliana.
    Dai Y; Ogilvie HA; Liu Y; Huang M; Markillie LM; Mitchell HD; Borrego EJ; Kolomiets MV; Gaffrey MJ; Orr G; Chehab EW; Mao WT; Braam J
    Planta; 2019 Dec; 250(6):1941-1953. PubMed ID: 31529398
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combining genome-wide association mapping and transcriptional networks to identify novel genes controlling glucosinolates in Arabidopsis thaliana.
    Chan EK; Rowe HC; Corwin JA; Joseph B; Kliebenstein DJ
    PLoS Biol; 2011 Aug; 9(8):e1001125. PubMed ID: 21857804
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.