These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

448 related articles for article (PubMed ID: 30547352)

  • 1. Diagnosis using deep-learning artificial intelligence based on the endocytoscopic observation of the esophagus.
    Kumagai Y; Takubo K; Kawada K; Aoyama K; Endo Y; Ozawa T; Hirasawa T; Yoshio T; Ishihara S; Fujishiro M; Tamaru JI; Mochiki E; Ishida H; Tada T
    Esophagus; 2019 Apr; 16(2):180-187. PubMed ID: 30547352
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Endocytoscopic observation of various esophageal lesions at ×600: can nuclear abnormality be recognized?
    Kumagai Y; Kawada K; Higashi M; Ishiguro T; Sobajima J; Fukuchi M; Ishibashi K; Baba H; Mochiki E; Aida J; Kawano T; Ishida H; Takubo K
    Dis Esophagus; 2015 Apr; 28(3):269-75. PubMed ID: 24467464
    [TBL] [Abstract][Full Text] [Related]  

  • 3. AI analysis and modified type classification for endocytoscopic observation of esophageal lesions.
    Kumagai Y; Takubo K; Sato T; Ishikawa H; Yamamoto E; Ishiguro T; Hatano S; Toyomasu Y; Kawada K; Matsuyama T; Mochiki E; Ishida H; Tada T
    Dis Esophagus; 2022 Sep; 35(9):. PubMed ID: 35292794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of artificial intelligence using convolutional neural networks in determining the invasion depth of esophageal squamous cell carcinoma.
    Tokai Y; Yoshio T; Aoyama K; Horie Y; Yoshimizu S; Horiuchi Y; Ishiyama A; Tsuchida T; Hirasawa T; Sakakibara Y; Yamada T; Yamaguchi S; Fujisaki J; Tada T
    Esophagus; 2020 Jul; 17(3):250-256. PubMed ID: 31980977
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Endocytoscopic observation for esophageal squamous cell carcinoma: can biopsy histology be omitted?
    Kumagai Y; Kawada K; Yamazaki S; Iida M; Momma K; Odajima H; Kawachi H; Nemoto T; Kawano T; Takubo K
    Dis Esophagus; 2009; 22(6):505-12. PubMed ID: 19302209
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ability of artificial intelligence to detect T1 esophageal squamous cell carcinoma from endoscopic videos and the effects of real-time assistance.
    Shiroma S; Yoshio T; Kato Y; Horie Y; Namikawa K; Tokai Y; Yoshimizu S; Yoshizawa N; Horiuchi Y; Ishiyama A; Hirasawa T; Tsuchida T; Akazawa N; Akiyama J; Tada T; Fujisaki J
    Sci Rep; 2021 Apr; 11(1):7759. PubMed ID: 33833355
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potential and present limitation of endocytoscopy in the diagnosis of esophageal squamous-cell carcinoma: a multicenter ex vivo pilot study.
    Fujishiro M; Takubo K; Sato Y; Kaise M; Niwa Y; Kato M; Muto M
    Gastrointest Endosc; 2007 Sep; 66(3):551-5. PubMed ID: 17725945
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Utility of an artificial intelligence system for classification of esophageal lesions when simulating its clinical use.
    Tajiri A; Ishihara R; Kato Y; Inoue T; Matsueda K; Miyake M; Waki K; Shimamoto Y; Fukuda H; Matsuura N; Egawa S; Yamaguchi S; Ogiyama H; Ogiso K; Nishida T; Aoi K; Tada T
    Sci Rep; 2022 Apr; 12(1):6677. PubMed ID: 35461350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Endoscopic detection and differentiation of esophageal lesions using a deep neural network.
    Ohmori M; Ishihara R; Aoyama K; Nakagawa K; Iwagami H; Matsuura N; Shichijo S; Yamamoto K; Nagaike K; Nakahara M; Inoue T; Aoi K; Okada H; Tada T
    Gastrointest Endosc; 2020 Feb; 91(2):301-309.e1. PubMed ID: 31585124
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Classification for invasion depth of esophageal squamous cell carcinoma using a deep neural network compared with experienced endoscopists.
    Nakagawa K; Ishihara R; Aoyama K; Ohmori M; Nakahira H; Matsuura N; Shichijo S; Nishida T; Yamada T; Yamaguchi S; Ogiyama H; Egawa S; Kishida O; Tada T
    Gastrointest Endosc; 2019 Sep; 90(3):407-414. PubMed ID: 31077698
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real-time automated diagnosis of precancerous lesions and early esophageal squamous cell carcinoma using a deep learning model (with videos).
    Guo L; Xiao X; Wu C; Zeng X; Zhang Y; Du J; Bai S; Xie J; Zhang Z; Li Y; Wang X; Cheung O; Sharma M; Liu J; Hu B
    Gastrointest Endosc; 2020 Jan; 91(1):41-51. PubMed ID: 31445040
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human-Like Artificial Intelligent System for Predicting Invasion Depth of Esophageal Squamous Cell Carcinoma Using Magnifying Narrow-Band Imaging Endoscopy: A Retrospective Multicenter Study.
    Zhang L; Luo R; Tang D; Zhang J; Su Y; Mao X; Ye L; Yao L; Zhou W; Zhou J; Lu Z; Zhang M; Xu Y; Deng Y; Huang X; He C; Xiao Y; Wang J; Wu L; Li J; Zou X; Yu H
    Clin Transl Gastroenterol; 2023 Oct; 14(10):e00606. PubMed ID: 37289447
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A single-center prospective study evaluating the usefulness of artificial intelligence for the diagnosis of esophageal squamous cell carcinoma in a real-time setting.
    Tani Y; Ishihara R; Inoue T; Okubo Y; Kawakami Y; Matsueda K; Miyake M; Yoshii S; Shichijo S; Kanesaka T; Yamamoto S; Takeuchi Y; Higashino K; Uedo N; Michida T; Kato Y; Tada T
    BMC Gastroenterol; 2023 May; 23(1):184. PubMed ID: 37231330
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diagnostic outcomes of esophageal cancer by artificial intelligence using convolutional neural networks.
    Horie Y; Yoshio T; Aoyama K; Yoshimizu S; Horiuchi Y; Ishiyama A; Hirasawa T; Tsuchida T; Ozawa T; Ishihara S; Kumagai Y; Fujishiro M; Maetani I; Fujisaki J; Tada T
    Gastrointest Endosc; 2019 Jan; 89(1):25-32. PubMed ID: 30120958
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Artificial intelligence for detecting superficial esophageal squamous cell carcinoma under multiple endoscopic imaging modalities: A multicenter study.
    Yuan XL; Guo LJ; Liu W; Zeng XH; Mou Y; Bai S; Pan ZG; Zhang T; Pu WF; Wen C; Wang J; Zhou ZD; Feng J; Hu B
    J Gastroenterol Hepatol; 2022 Jan; 37(1):169-178. PubMed ID: 34532890
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Usefulness of an artificial intelligence system for the detection of esophageal squamous cell carcinoma evaluated with videos simulating overlooking situation.
    Waki K; Ishihara R; Kato Y; Shoji A; Inoue T; Matsueda K; Miyake M; Shimamoto Y; Fukuda H; Matsuura N; Ono Y; Yao K; Hashimoto S; Terai S; Ohmori M; Tanaka K; Kato M; Shono T; Miyamoto H; Tanaka Y; Tada T
    Dig Endosc; 2021 Nov; 33(7):1101-1109. PubMed ID: 33502046
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent advancement of observing living cells in the esophagus using CM double staining: endocytoscopic atypia classification.
    Minami H; Inoue H; Yokoyama A; Ikeda H; Satodate H; Hamatani S; Haji A; Kudo S
    Dis Esophagus; 2012 Apr; 25(3):235-41. PubMed ID: 21895852
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vascular density of superficial esophageal squamous cell carcinoma determined by direct observation of resected specimen using narrow band imaging with magnifying endoscopy.
    Kikuchi D; Iizuka T; Hoteya S; Nomura K; Kuribayashi Y; Toba T; Tanaka M; Yamashita S; Furuhata T; Matsui A; Mitani T; Inoshita N; Kaise M
    Dis Esophagus; 2017 Nov; 30(11):1-5. PubMed ID: 28881911
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-time assessment of video images for esophageal squamous cell carcinoma invasion depth using artificial intelligence.
    Shimamoto Y; Ishihara R; Kato Y; Shoji A; Inoue T; Matsueda K; Miyake M; Waki K; Kono M; Fukuda H; Matsuura N; Nagaike K; Aoi K; Yamamoto K; Inoue T; Nakahara M; Nishihara A; Tada T
    J Gastroenterol; 2020 Nov; 55(11):1037-1045. PubMed ID: 32778959
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical biopsy for esophageal squamous cell neoplasia by using endocytoscopy.
    Shimoda Y; Shimizu Y; Takahashi H; Okahara S; Miyake T; Ichihara S; Tanaka I; Inoue M; Kinowaki S; Ono M; Yamamoto K; Ono S; Sakamoto N
    BMC Gastroenterol; 2022 May; 22(1):259. PubMed ID: 35597920
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.