These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Whole-Transcriptome Causal Network Inference with Genomic and Transcriptomic Data. Wang L; Michoel T Methods Mol Biol; 2019; 1883():95-109. PubMed ID: 30547397 [TBL] [Abstract][Full Text] [Related]
3. Causal Queries from Observational Data in Biological Systems via Bayesian Networks: An Empirical Study in Small Networks. White A; Vignes M Methods Mol Biol; 2019; 1883():111-142. PubMed ID: 30547398 [TBL] [Abstract][Full Text] [Related]
4. Gene Regulatory Network Inference from Single-Cell Data Using Multivariate Information Measures. Chan TE; Stumpf MPH; Babtie AC Cell Syst; 2017 Sep; 5(3):251-267.e3. PubMed ID: 28957658 [TBL] [Abstract][Full Text] [Related]
5. WASABI: a dynamic iterative framework for gene regulatory network inference. Bonnaffoux A; Herbach U; Richard A; Guillemin A; Gonin-Giraud S; Gros PA; Gandrillon O BMC Bioinformatics; 2019 May; 20(1):220. PubMed ID: 31046682 [TBL] [Abstract][Full Text] [Related]
7. The technology and biology of single-cell RNA sequencing. Kolodziejczyk AA; Kim JK; Svensson V; Marioni JC; Teichmann SA Mol Cell; 2015 May; 58(4):610-20. PubMed ID: 26000846 [TBL] [Abstract][Full Text] [Related]
8. Inference of Gene Co-expression Networks from Single-Cell RNA-Sequencing Data. Lamere AT; Li J Methods Mol Biol; 2019; 1935():141-153. PubMed ID: 30758825 [TBL] [Abstract][Full Text] [Related]
9. A comprehensive survey of regulatory network inference methods using single cell RNA sequencing data. Nguyen H; Tran D; Tran B; Pehlivan B; Nguyen T Brief Bioinform; 2021 May; 22(3):. PubMed ID: 34020546 [TBL] [Abstract][Full Text] [Related]
10. Overview and Evaluation of Recent Methods for Statistical Inference of Gene Regulatory Networks from Time Series Data. Grzegorczyk M; Aderhold A; Husmeier D Methods Mol Biol; 2019; 1883():49-94. PubMed ID: 30547396 [TBL] [Abstract][Full Text] [Related]
17. Gene Regulatory Network Inference from Perturbed Time-Series Expression Data via Ordered Dynamical Expansion of Non-Steady State Actors. Zamanighomi M; Zamanian M; Kimber M; Wang Z IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(4):1093-1106. PubMed ID: 26701893 [TBL] [Abstract][Full Text] [Related]
19. A Bayesian framework for the inference of gene regulatory networks from time and pseudo-time series data. Sanchez-Castillo M; Blanco D; Tienda-Luna IM; Carrion MC; Huang Y Bioinformatics; 2018 Mar; 34(6):964-970. PubMed ID: 29028984 [TBL] [Abstract][Full Text] [Related]