These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 30547565)

  • 1. Kinetics of Ligand-Protein Dissociation from All-Atom Simulations: Are We There Yet?
    Ribeiro JML; Tsai ST; Pramanik D; Wang Y; Tiwary P
    Biochemistry; 2019 Jan; 58(3):156-165. PubMed ID: 30547565
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular simulations with solvent competition quantify water displaceability and provide accurate interaction maps of protein binding sites.
    Alvarez-Garcia D; Barril X
    J Med Chem; 2014 Oct; 57(20):8530-9. PubMed ID: 25275946
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Can One Trust Kinetic and Thermodynamic Observables from Biased Metadynamics Simulations?: Detailed Quantitative Benchmarks on Millimolar Drug Fragment Dissociation.
    Pramanik D; Smith Z; Kells A; Tiwary P
    J Phys Chem B; 2019 May; 123(17):3672-3678. PubMed ID: 30974941
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Could the FDA-approved anti-HIV PR inhibitors be promising anticancer agents? An answer from enhanced docking approach and molecular dynamics analyses.
    Arodola OA; Soliman ME
    Drug Des Devel Ther; 2015; 9():6055-65. PubMed ID: 26622167
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transient States and Barriers from Molecular Simulations and the Milestoning Theory: Kinetics in Ligand-Protein Recognition and Compound Design.
    Tang Z; Chen SH; Chang CA
    J Chem Theory Comput; 2020 Mar; 16(3):1882-1895. PubMed ID: 32031801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular Basis of Ligand Dissociation from G Protein-Coupled Receptors and Predicting Residence Time.
    Guo D; IJzerman AP
    Methods Mol Biol; 2018; 1705():197-206. PubMed ID: 29188564
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine Learning Analysis of τRAMD Trajectories to Decipher Molecular Determinants of Drug-Target Residence Times.
    Kokh DB; Kaufmann T; Kister B; Wade RC
    Front Mol Biosci; 2019; 6():36. PubMed ID: 31179286
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding ligand-receptor non-covalent binding kinetics using molecular modeling.
    Tang Z; Roberts CC; Chang CA
    Front Biosci (Landmark Ed); 2017 Jan; 22(6):960-981. PubMed ID: 27814657
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Perspectives on Ligand/Protein Binding Kinetics Simulations: Force Fields, Machine Learning, Sampling, and User-Friendliness.
    Conflitti P; Raniolo S; Limongelli V
    J Chem Theory Comput; 2023 Sep; 19(18):6047-6061. PubMed ID: 37656199
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toward High-Throughput Predictive Modeling of Protein Binding/Unbinding Kinetics.
    Chiu SH; Xie L
    J Chem Inf Model; 2016 Jun; 56(6):1164-74. PubMed ID: 27159844
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toward Achieving Efficient and Accurate Ligand-Protein Unbinding with Deep Learning and Molecular Dynamics through RAVE.
    Lamim Ribeiro JM; Tiwary P
    J Chem Theory Comput; 2019 Jan; 15(1):708-719. PubMed ID: 30525598
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of the Association Pathways for a Pair of Fast and Slow Binding Ligands of HIV-1 Protease.
    Huang YM; Raymundo MA; Chen W; Chang CA
    Biochemistry; 2017 Mar; 56(9):1311-1323. PubMed ID: 28060481
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A workflow for exploring ligand dissociation from a macromolecule: Efficient random acceleration molecular dynamics simulation and interaction fingerprint analysis of ligand trajectories.
    Kokh DB; Doser B; Richter S; Ormersbach F; Cheng X; Wade RC
    J Chem Phys; 2020 Sep; 153(12):125102. PubMed ID: 33003755
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimation of Drug-Target Residence Times by τ-Random Acceleration Molecular Dynamics Simulations.
    Kokh DB; Amaral M; Bomke J; Grädler U; Musil D; Buchstaller HP; Dreyer MK; Frech M; Lowinski M; Vallee F; Bianciotto M; Rak A; Wade RC
    J Chem Theory Comput; 2018 Jul; 14(7):3859-3869. PubMed ID: 29768913
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simple, yet powerful methodologies for conformational sampling of proteins.
    Harada R; Takano Y; Baba T; Shigeta Y
    Phys Chem Chem Phys; 2015 Mar; 17(9):6155-73. PubMed ID: 25659594
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Switches of hydrogen bonds during ligand-protein association processes determine binding kinetics.
    Huang YM; Kang M; Chang CE
    J Mol Recognit; 2014 Sep; 27(9):537-48. PubMed ID: 25042708
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Perturbation Approaches for Exploring Protein Binding Site Flexibility to Predict Transient Binding Pockets.
    Kokh DB; Czodrowski P; Rippmann F; Wade RC
    J Chem Theory Comput; 2016 Aug; 12(8):4100-13. PubMed ID: 27399277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Baseline Model for Predicting Protein-Ligand Unbinding Kinetics through Machine Learning.
    Amangeldiuly N; Karlov D; Fedorov MV
    J Chem Inf Model; 2020 Dec; 60(12):5946-5956. PubMed ID: 33183000
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binding pathways of ligands to HIV-1 protease: coarse-grained and atomistic simulations.
    Chang CE; Trylska J; Tozzini V; McCammon JA
    Chem Biol Drug Des; 2007 Jan; 69(1):5-13. PubMed ID: 17313452
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigating Small-Molecule Ligand Binding to G Protein-Coupled Receptors with Biased or Unbiased Molecular Dynamics Simulations.
    Marino KA; Filizola M
    Methods Mol Biol; 2018; 1705():351-364. PubMed ID: 29188572
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.