These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 30547565)

  • 21. Binding pathways of ligands to HIV-1 protease: coarse-grained and atomistic simulations.
    Chang CE; Trylska J; Tozzini V; McCammon JA
    Chem Biol Drug Des; 2007 Jan; 69(1):5-13. PubMed ID: 17313452
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Investigating Small-Molecule Ligand Binding to G Protein-Coupled Receptors with Biased or Unbiased Molecular Dynamics Simulations.
    Marino KA; Filizola M
    Methods Mol Biol; 2018; 1705():351-364. PubMed ID: 29188572
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Supervised Molecular Dynamics Approach to Unbiased Ligand-Protein Unbinding.
    Deganutti G; Moro S; Reynolds CA
    J Chem Inf Model; 2020 Mar; 60(3):1804-1817. PubMed ID: 32126172
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Showcasing modern molecular dynamics simulations of membrane proteins through G protein-coupled receptors.
    Johnston JM; Filizola M
    Curr Opin Struct Biol; 2011 Aug; 21(4):552-8. PubMed ID: 21764295
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Predicting Residence Time and Drug Unbinding Pathway through Scaled Molecular Dynamics.
    Schuetz DA; Bernetti M; Bertazzo M; Musil D; Eggenweiler HM; Recanatini M; Masetti M; Ecker GF; Cavalli A
    J Chem Inf Model; 2019 Jan; 59(1):535-549. PubMed ID: 30500211
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structure-kinetic relationships that control the residence time of drug-target complexes: insights from molecular structure and dynamics.
    Lu H; Iuliano JN; Tonge PJ
    Curr Opin Chem Biol; 2018 Jun; 44():101-109. PubMed ID: 29986213
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Beyond standard molecular dynamics: investigating the molecular mechanisms of G protein-coupled receptors with enhanced molecular dynamics methods.
    Johnston JM; Filizola M
    Adv Exp Med Biol; 2014; 796():95-125. PubMed ID: 24158803
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Assessment of Conformational State Transitions of Class B GPCRs Using Molecular Dynamics.
    Liao C; May V; Li J
    Methods Mol Biol; 2019; 1947():3-19. PubMed ID: 30969408
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Simulation of ligand dissociation kinetics from the protein kinase PYK2.
    Spiriti J; Noé F; Wong CF
    J Comput Chem; 2022 Oct; 43(28):1911-1922. PubMed ID: 36073605
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fast and accurate determination of the relative binding affinities of small compounds to HIV-1 protease using non-equilibrium work.
    Ngo ST; Hung HM; Nguyen MT
    J Comput Chem; 2016 Dec; 37(31):2734-2742. PubMed ID: 27709639
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Kinetics of protein-ligand unbinding via smoothed potential molecular dynamics simulations.
    Mollica L; Decherchi S; Zia SR; Gaspari R; Cavalli A; Rocchia W
    Sci Rep; 2015 Jun; 5():11539. PubMed ID: 26103621
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Refinement of protein structure homology models via long, all-atom molecular dynamics simulations.
    Raval A; Piana S; Eastwood MP; Dror RO; Shaw DE
    Proteins; 2012 Aug; 80(8):2071-9. PubMed ID: 22513870
    [TBL] [Abstract][Full Text] [Related]  

  • 33. G Protein-Coupled Receptor-Ligand Dissociation Rates and Mechanisms from τRAMD Simulations.
    Kokh DB; Wade RC
    J Chem Theory Comput; 2021 Oct; 17(10):6610-6623. PubMed ID: 34495672
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The prediction of protein-ligand unbinding for modern drug discovery.
    Zhang Q; Zhao N; Meng X; Yu F; Yao X; Liu H
    Expert Opin Drug Discov; 2022 Feb; 17(2):191-205. PubMed ID: 34731059
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular Dynamics in Mixed Solvents Reveals Protein-Ligand Interactions, Improves Docking, and Allows Accurate Binding Free Energy Predictions.
    Arcon JP; Defelipe LA; Modenutti CP; López ED; Alvarez-Garcia D; Barril X; Turjanski AG; Martí MA
    J Chem Inf Model; 2017 Apr; 57(4):846-863. PubMed ID: 28318252
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular dynamics simulations and novel drug discovery.
    Liu X; Shi D; Zhou S; Liu H; Liu H; Yao X
    Expert Opin Drug Discov; 2018 Jan; 13(1):23-37. PubMed ID: 29139324
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ligand diffusion in proteins via enhanced sampling in molecular dynamics.
    Rydzewski J; Nowak W
    Phys Life Rev; 2017 Dec; 22-23():58-74. PubMed ID: 28410930
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Relative Binding Free Energy Calculations Applied to Protein Homology Models.
    Cappel D; Hall ML; Lenselink EB; Beuming T; Qi J; Bradner J; Sherman W
    J Chem Inf Model; 2016 Dec; 56(12):2388-2400. PubMed ID: 28024402
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Investigating Drug-Target Residence Time in Kinases through Enhanced Sampling Simulations.
    Gobbo D; Piretti V; Di Martino RMC; Tripathi SK; Giabbai B; Storici P; Demitri N; Girotto S; Decherchi S; Cavalli A
    J Chem Theory Comput; 2019 Aug; 15(8):4646-4659. PubMed ID: 31246463
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Computing the binding affinity of a ligand buried deep inside a protein with the hybrid steered molecular dynamics.
    Villarreal OD; Yu L; Rodriguez RA; Chen LY
    Biochem Biophys Res Commun; 2017 Jan; 483(1):203-208. PubMed ID: 28034750
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.