These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 30547584)

  • 1. Racemic Fluorescence Probe for Enantiomeric Excess Determination: Application of Cononsolvency of a Polymer in Sensing.
    Nian S; Pu L
    J Org Chem; 2019 Jan; 84(2):909-913. PubMed ID: 30547584
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amphiphilic Polymer-Based Fluorescent Probe for Enantioselective Recognition of Amino Acids in Immiscible Water and Organic Phases.
    Nian S; Pu L
    Chemistry; 2017 Dec; 23(71):18066-18073. PubMed ID: 29069528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enantioselective fluorescent sensors: a tale of BINOL.
    Pu L
    Acc Chem Res; 2012 Feb; 45(2):150-63. PubMed ID: 21834528
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous Determination of Concentration and Enantiomeric Composition in Fluorescent Sensing.
    Pu L
    Acc Chem Res; 2017 Apr; 50(4):1032-1040. PubMed ID: 28287702
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enantioselective Sensing in the Fluorous Phase for Catalyst Screening: Application of a Racemic Fluorescent Probe.
    Wu X; Marks J; Wang C; Dickie D; Pu L
    J Org Chem; 2021 Mar; 86(6):4607-4615. PubMed ID: 33667096
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optically active BINOL core-based phenyleneethynylene dendrimers for the enantioselective fluorescent recognition of amino alcohols.
    Pugh VJ; Hu QS; Zuo X; Lewis FD; Pu L
    J Org Chem; 2001 Sep; 66(18):6136-40. PubMed ID: 11529742
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous Determination of Concentration and Enantiomeric Composition of Amino Acids in Aqueous Solution by Using a Tetrabromobinaphthyl Dialdehyde Probe.
    Iqbal S; Yu S; Jiang L; Wang X; Chen Y; Wang Y; Yu X; Pu L
    Chemistry; 2019 Jul; 25(42):9967-9972. PubMed ID: 31056773
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sulfonation of 3,3'-Diformyl-BINOL for Enantioselective Fluorescent Recognition of Amino Acids in Water.
    Zhao F; Wang Y; Wu X; Yu S; Yu X; Pu L
    Chemistry; 2020 Jun; 26(32):7258-7262. PubMed ID: 32128894
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Erratum: Preparation of Poly(pentafluorophenyl acrylate) Functionalized SiO2 Beads for Protein Purification.
    J Vis Exp; 2019 Apr; (146):. PubMed ID: 31038480
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conjugated polymer-enhanced enantioselectivity in fluorescent sensing.
    Zhang X; Wang C; Wang P; Du J; Zhang G; Pu L
    Chem Sci; 2016 Jun; 7(6):3614-3620. PubMed ID: 29997853
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rational design of a fluorescent sensor to simultaneously determine both the enantiomeric composition and the concentration of chiral functional amines.
    Wen K; Yu S; Huang Z; Chen L; Xiao M; Yu X; Pu L
    J Am Chem Soc; 2015 Apr; 137(13):4517-24. PubMed ID: 25790271
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Highly Fluorinated Chiral Aldehyde for Enantioselective Fluorescent Recognition in a Biphasic System.
    Wang C; Wu X; Pu L
    Chemistry; 2017 Aug; 23(45):10749-10752. PubMed ID: 28675621
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hg(2+) -induced in situ generated radical cation of (S)-BINOL-based polymer for highly enantioselective recognition of phenylalaninol.
    Jiao J; Li F; Zhang S; Quan Y; Zheng W; Cheng Y; Zhu C
    Macromol Rapid Commun; 2014 Aug; 35(16):1443-9. PubMed ID: 25048009
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid optical methods for enantiomeric excess analysis: from enantioselective indicator displacement assays to exciton-coupled circular dichroism.
    Jo HH; Lin CY; Anslyn EV
    Acc Chem Res; 2014 Jul; 47(7):2212-21. PubMed ID: 24892802
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A convenient fluorescent method to simultaneously determine the enantiomeric composition and concentration of functional chiral amines.
    Huang Z; Yu S; Zhao X; Wen K; Xu Y; Yu X; Xu Y; Pu L
    Chemistry; 2014 Dec; 20(50):16458-61. PubMed ID: 25348091
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A surface molecularly imprinted polymer as chiral stationary phase for chiral separation of 1,1'-binaphthalene-2-naphthol racemates.
    Dong H; Zhang D; Lin H; Wang Y; Liu L; Zheng M; Li X; Zhang C; Li J; Zhang P; So J
    Chirality; 2017 Jul; 29(7):340-347. PubMed ID: 28543776
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Water-assisted atom transfer radical polymerization of N-isopropylacrylamide: nature of solvent and temperature.
    Ye J; Narain R
    J Phys Chem B; 2009 Jan; 113(3):676-81. PubMed ID: 19113827
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enantioselective release of controlled delivery granules based on molecularly imprinted polymers.
    Suedee R; Srichana T; Rattananont T
    Drug Deliv; 2002; 9(1):19-30. PubMed ID: 11839205
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A polymer-based probe for specific discrimination of cysteine.
    Liu K; Du G; Zhao M; Ye L; Shen H; Jiang L
    Org Biomol Chem; 2017 Jun; 15(22):4859-4866. PubMed ID: 28537301
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly selective palladium catalyzed kinetic resolution and enantioselective substitution of racemic allylic carbonates with sulfur nucleophiles: asymmetric synthesis of allylic sulfides, allylic sulfones, and allylic alcohols.
    Gais HJ; Jagusch T; Spalthoff N; Gerhards F; Frank M; Raabe G
    Chemistry; 2003 Sep; 9(17):4202-21. PubMed ID: 12953206
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.