These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 30547588)

  • 1. Colorimetric Sensor Array for Monitoring CO and Ethylene.
    Li Z; Suslick KS
    Anal Chem; 2019 Jan; 91(1):797-802. PubMed ID: 30547588
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High Performance Colorimetric Carbon Monoxide Sensor for Continuous Personal Exposure Monitoring.
    Lin C; Xian X; Qin X; Wang D; Tsow F; Forzani E; Tao N
    ACS Sens; 2018 Feb; 3(2):327-333. PubMed ID: 29299924
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemical sensing of ethylene employing a thin ionic-liquid layer.
    Zevenbergen MA; Wouters D; Dam VA; Brongersma SH; Crego-Calama M
    Anal Chem; 2011 Aug; 83(16):6300-7. PubMed ID: 21721532
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Low Cost Compact Measurement System Constructed Using a Smart Electrochemical Sensor for the Real-Time Discrimination of Fruit Ripening.
    Ma L; Wang L; Chen R; Chang K; Wang S; Hu X; Sun X; Lu Z; Sun H; Guo Q; Jiang M; Hu J
    Sensors (Basel); 2016 Apr; 16(4):. PubMed ID: 27070614
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of Metal-Organic Framework for Gaseous Plant Hormone Encapsulation To Manage Ripening of Climacteric Produce.
    Zhang B; Luo Y; Kanyuck K; Bauchan G; Mowery J; Zavalij P
    J Agric Food Chem; 2016 Jun; 64(25):5164-70. PubMed ID: 27250565
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid and Visual Detection and Quantitation of Ethylene Released from Ripening Fruits: The New Use of Grubbs Catalyst.
    Sun M; Yang X; Zhang Y; Wang S; Wong MW; Ni R; Huang D
    J Agric Food Chem; 2019 Jan; 67(1):507-513. PubMed ID: 30508479
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Naked-Eye Detection of Ethylene Using Thiol-Functionalized Polydiacetylene-Based Flexible Sensors.
    Nguyen LH; Oveissi F; Chandrawati R; Dehghani F; Naficy S
    ACS Sens; 2020 Jul; 5(7):1921-1928. PubMed ID: 32551585
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of low-cost electro-chemical sensors for environmental monitoring of ozone, nitrogen dioxide, and carbon monoxide.
    Afshar-Mohajer N; Zuidema C; Sousan S; Hallett L; Tatum M; Rule AM; Thomas G; Peters TM; Koehler K
    J Occup Environ Hyg; 2018 Feb; 15(2):87-98. PubMed ID: 29083958
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Olefin Metathesis-Based Fluorescent Probes for the Selective Detection of Ethylene in Live Cells.
    Toussaint SNW; Calkins RT; Lee S; Michel BW
    J Am Chem Soc; 2018 Oct; 140(41):13151-13155. PubMed ID: 30281288
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selecting fruits with carbon nanotube sensors.
    Ding M; Star A
    Angew Chem Int Ed Engl; 2012 Jul; 51(31):7637-8. PubMed ID: 22711246
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A colorimetric sensor array of porous pigments.
    Lim SH; Kemling JW; Feng L; Suslick KS
    Analyst; 2009 Dec; 134(12):2453-7. PubMed ID: 19918616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Optoelectronic Nose.
    Li Z; Suslick KS
    Acc Chem Res; 2021 Feb; 54(4):950-960. PubMed ID: 33332086
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical sensors for monitoring and control of plant growth systems.
    Tabacco MB; Zhou Q; DiGiuseppe TG
    Adv Space Res; 1994 Nov; 14(11):223-6. PubMed ID: 11540186
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ethylene detection in fruit supply chains.
    Janssen S; Schmitt K; Blanke M; Bauersfeld ML; Wöllenstein J; Lang W
    Philos Trans A Math Phys Eng Sci; 2014 Jun; 372(2017):20130311. PubMed ID: 24797138
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metal-modified and vertically aligned carbon nanotube sensors array for landfill gas monitoring applications.
    Penza M; Rossi R; Alvisi M; Serra E
    Nanotechnology; 2010 Mar; 21(10):105501. PubMed ID: 20154374
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ethylene Measurements from Sweet Fruits Flowers Using Photoacoustic Spectroscopy.
    Popa C
    Molecules; 2019 Mar; 24(6):. PubMed ID: 30909457
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Current methods for detecting ethylene in plants.
    Cristescu SM; Mandon J; Arslanov D; De Pessemier J; Hermans C; Harren FJ
    Ann Bot; 2013 Mar; 111(3):347-60. PubMed ID: 23243188
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Parallel online determination of ethylene release rate by Shaken Parsley cell cultures using a modified RAMOS device.
    Schulte A; Schilling JV; Nolten J; Korona A; Krömke H; Vennekötter JB; Schillheim B; Wessling M; Conrath U; Büchs J
    BMC Plant Biol; 2018 Jun; 18(1):101. PubMed ID: 29859042
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous gas chromatographic determination of four toxic gases generally present in combustion atmospheres.
    Endecott BR; Sanders DC; Chaturvedi AK
    J Anal Toxicol; 1996; 20(3):189-94. PubMed ID: 8735201
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gas purification by nonthermal plasma: a case study of ethylene.
    Aerts R; Tu X; Van Gaens W; Whitehead JC; Bogaerts A
    Environ Sci Technol; 2013 Jun; 47(12):6478-85. PubMed ID: 23676182
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.