These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 30547654)

  • 1. Demonstration of Fidelity Improvement Using Dynamical Decoupling with Superconducting Qubits.
    Pokharel B; Anand N; Fortman B; Lidar DA
    Phys Rev Lett; 2018 Nov; 121(22):220502. PubMed ID: 30547654
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dephasing-Insensitive Quantum Information Storage and Processing with Superconducting Qubits.
    Guo Q; Zheng SB; Wang J; Song C; Zhang P; Li K; Liu W; Deng H; Huang K; Zheng D; Zhu X; Wang H; Lu CY; Pan JW
    Phys Rev Lett; 2018 Sep; 121(13):130501. PubMed ID: 30312077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decoherence-protected quantum gates for a hybrid solid-state spin register.
    van der Sar T; Wang ZH; Blok MS; Bernien H; Taminiau TH; Toyli DM; Lidar DA; Awschalom DD; Hanson R; Dobrovitski VV
    Nature; 2012 Apr; 484(7392):82-6. PubMed ID: 22481361
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protecting quantum entanglement from leakage and qubit errors via repetitive parity measurements.
    Bultink CC; O'Brien TE; Vollmer R; Muthusubramanian N; Beekman MW; Rol MA; Fu X; Tarasinski B; Ostroukh V; Varbanov B; Bruno A; DiCarlo L
    Sci Adv; 2020 Mar; 6(12):eaay3050. PubMed ID: 32219159
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High fidelity quantum gates via dynamical decoupling.
    West JR; Lidar DA; Fong BH; Gyure MF
    Phys Rev Lett; 2010 Dec; 105(23):230503. PubMed ID: 21231440
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Entanglement Purification and Protection in a Superconducting Quantum Network.
    Yan H; Zhong Y; Chang HS; Bienfait A; Chou MH; Conner CR; Dumur É; Grebel J; Povey RG; Cleland AN
    Phys Rev Lett; 2022 Feb; 128(8):080504. PubMed ID: 35275688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Realization of three-qubit quantum error correction with superconducting circuits.
    Reed MD; DiCarlo L; Nigg SE; Sun L; Frunzio L; Girvin SM; Schoelkopf RJ
    Nature; 2012 Feb; 482(7385):382-5. PubMed ID: 22297844
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental exploration of five-qubit quantum error-correcting code with superconducting qubits.
    Gong M; Yuan X; Wang S; Wu Y; Zhao Y; Zha C; Li S; Zhang Z; Zhao Q; Liu Y; Liang F; Lin J; Xu Y; Deng H; Rong H; Lu H; Benjamin SC; Peng CZ; Ma X; Chen YA; Zhu X; Pan JW
    Natl Sci Rev; 2022 Jan; 9(1):nwab011. PubMed ID: 35070323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protecting conditional quantum gates by robust dynamical decoupling.
    Piltz Ch; Scharfenberger B; Khromova A; Varón AF; Wunderlich Ch
    Phys Rev Lett; 2013 May; 110(20):200501. PubMed ID: 25167390
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Principles of control for decoherence-free subsystems.
    Cappellaro P; Hodges JS; Havel TF; Cory DG
    J Chem Phys; 2006 Jul; 125(4):44514. PubMed ID: 16942163
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental protection of two-qubit quantum gates against environmental noise by dynamical decoupling.
    Zhang J; Suter D
    Phys Rev Lett; 2015 Sep; 115(11):110502. PubMed ID: 26406814
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protecting a quantum memory for a photonic polarization qubit in a cold atomic ensemble by dynamical decoupling.
    Wu Y; Chen L; Xu Z; Wang H
    Opt Express; 2014 Sep; 22(19):23360-71. PubMed ID: 25321805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Environmental noise spectroscopy with qubits subjected to dynamical decoupling.
    Szańkowski P; Ramon G; Krzywda J; Kwiatkowski D; Cywiński Ł
    J Phys Condens Matter; 2017 Aug; 29(33):333001. PubMed ID: 28569239
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Error-Transparent Quantum Gates for Small Logical Qubit Architectures.
    Kapit E
    Phys Rev Lett; 2018 Feb; 120(5):050503. PubMed ID: 29481172
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimized dynamical decoupling in a model quantum memory.
    Biercuk MJ; Uys H; VanDevender AP; Shiga N; Itano WM; Bollinger JJ
    Nature; 2009 Apr; 458(7241):996-1000. PubMed ID: 19396139
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Error rate reduction of single-qubit gates via noise-aware decomposition into native gates.
    Maldonado TJ; Flick J; Krastanov S; Galda A
    Sci Rep; 2022 Apr; 12(1):6379. PubMed ID: 35430608
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient Quantum Error Correction of Dephasing Induced by a Common Fluctuator.
    Layden D; Chen M; Cappellaro P
    Phys Rev Lett; 2020 Jan; 124(2):020504. PubMed ID: 32004019
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robust dynamical decoupling for quantum computing and quantum memory.
    Souza AM; Alvarez GA; Suter D
    Phys Rev Lett; 2011 Jun; 106(24):240501. PubMed ID: 21770554
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New material platform for superconducting transmon qubits with coherence times exceeding 0.3 milliseconds.
    Place APM; Rodgers LVH; Mundada P; Smitham BM; Fitzpatrick M; Leng Z; Premkumar A; Bryon J; Vrajitoarea A; Sussman S; Cheng G; Madhavan T; Babla HK; Le XH; Gang Y; Jäck B; Gyenis A; Yao N; Cava RJ; de Leon NP; Houck AA
    Nat Commun; 2021 Mar; 12(1):1779. PubMed ID: 33741989
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Millisecond charge-parity fluctuations and induced decoherence in a superconducting transmon qubit.
    Ristè D; Bultink CC; Tiggelman MJ; Schouten RN; Lehnert KW; DiCarlo L
    Nat Commun; 2013; 4():1913. PubMed ID: 23715272
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.