These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 30547813)

  • 1. A novel semi-supervised model for miRNA-disease association prediction based on [Formula: see text]-norm graph.
    Liang C; Yu S; Wong KC; Luo J
    J Transl Med; 2018 Dec; 16(1):357. PubMed ID: 30547813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MDHGI: Matrix Decomposition and Heterogeneous Graph Inference for miRNA-disease association prediction.
    Chen X; Yin J; Qu J; Huang L
    PLoS Comput Biol; 2018 Aug; 14(8):e1006418. PubMed ID: 30142158
    [TBL] [Abstract][Full Text] [Related]  

  • 3. WBNPMD: weighted bipartite network projection for microRNA-disease association prediction.
    Xie G; Fan Z; Sun Y; Wu C; Ma L
    J Transl Med; 2019 Sep; 17(1):322. PubMed ID: 31547811
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An improved random forest-based computational model for predicting novel miRNA-disease associations.
    Yao D; Zhan X; Kwoh CK
    BMC Bioinformatics; 2019 Dec; 20(1):624. PubMed ID: 31795954
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GIMDA: Graphlet interaction-based MiRNA-disease association prediction.
    Chen X; Guan NN; Li JQ; Yan GY
    J Cell Mol Med; 2018 Mar; 22(3):1548-1561. PubMed ID: 29272076
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Semi-Supervised Learning Method for MiRNA-Disease Association Prediction Based on Variational Autoencoder.
    Ji C; Wang Y; Gao Z; Li L; Ni J; Zheng C
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(4):2049-2059. PubMed ID: 33735084
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational method using heterogeneous graph convolutional network model combined with reinforcement layer for MiRNA-disease association prediction.
    Huang D; An J; Zhang L; Liu B
    BMC Bioinformatics; 2022 Jul; 23(1):299. PubMed ID: 35879658
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PBMDA: A novel and effective path-based computational model for miRNA-disease association prediction.
    You ZH; Huang ZA; Zhu Z; Yan GY; Li ZW; Wen Z; Chen X
    PLoS Comput Biol; 2017 Mar; 13(3):e1005455. PubMed ID: 28339468
    [TBL] [Abstract][Full Text] [Related]  

  • 9. LSGSP: a novel miRNA-disease association prediction model using a Laplacian score of the graphs and space projection federated method.
    Zhang Y; Chen M; Cheng X; Chen Z
    RSC Adv; 2019 Sep; 9(51):29747-29759. PubMed ID: 35531537
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GLNMDA: a novel method for miRNA-disease association prediction based on global linear neighborhoods.
    Yu SP; Liang C; Xiao Q; Li GH; Ding PJ; Luo JW
    RNA Biol; 2018; 15(9):1215-1227. PubMed ID: 30244645
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In silico prediction of potential miRNA-disease association using an integrative bioinformatics approach based on kernel fusion.
    Guan NN; Wang CC; Zhang L; Huang L; Li JQ; Piao X
    J Cell Mol Med; 2020 Jan; 24(1):573-587. PubMed ID: 31747722
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FCGCNMDA: predicting miRNA-disease associations by applying fully connected graph convolutional networks.
    Li J; Li Z; Nie R; You Z; Bao W
    Mol Genet Genomics; 2020 Sep; 295(5):1197-1209. PubMed ID: 32500265
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel computational model based on super-disease and miRNA for potential miRNA-disease association prediction.
    Chen X; Jiang ZC; Xie D; Huang DS; Zhao Q; Yan GY; You ZH
    Mol Biosyst; 2017 May; 13(6):1202-1212. PubMed ID: 28470244
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting MiRNA-disease associations by multiple meta-paths fusion graph embedding model.
    Zhang L; Liu B; Li Z; Zhu X; Liang Z; An J
    BMC Bioinformatics; 2020 Oct; 21(1):470. PubMed ID: 33087064
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SNMDA: A novel method for predicting microRNA-disease associations based on sparse neighbourhood.
    Qu Y; Zhang H; Liang C; Ding P; Luo J
    J Cell Mol Med; 2018 Oct; 22(10):5109-5120. PubMed ID: 30030889
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual Laplacian regularized matrix completion for microRNA-disease associations prediction.
    Tang C; Zhou H; Zheng X; Zhang Y; Sha X
    RNA Biol; 2019 May; 16(5):601-611. PubMed ID: 30676207
    [TBL] [Abstract][Full Text] [Related]  

  • 17. LRSSLMDA: Laplacian Regularized Sparse Subspace Learning for MiRNA-Disease Association prediction.
    Chen X; Huang L
    PLoS Comput Biol; 2017 Dec; 13(12):e1005912. PubMed ID: 29253885
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MCLPMDA: A novel method for miRNA-disease association prediction based on matrix completion and label propagation.
    Yu SP; Liang C; Xiao Q; Li GH; Ding PJ; Luo JW
    J Cell Mol Med; 2019 Feb; 23(2):1427-1438. PubMed ID: 30499204
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MCMDA: Matrix completion for MiRNA-disease association prediction.
    Li JQ; Rong ZH; Chen X; Yan GY; You ZH
    Oncotarget; 2017 Mar; 8(13):21187-21199. PubMed ID: 28177900
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of Disease-related microRNAs through Integrating Attributes of microRNA Nodes and Multiple Kinds of Connecting Edges.
    Xuan P; Li L; Zhang T; Zhang Y; Song Y
    Molecules; 2019 Aug; 24(17):. PubMed ID: 31455026
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.