These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 30547978)

  • 1. Controlling dipole transparency with magnetic fields.
    Hughes S; Agarwal GS
    Opt Lett; 2018 Dec; 43(24):5953-5956. PubMed ID: 30547978
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anisotropy-Induced Quantum Interference and Population Trapping between Orthogonal Quantum Dot Exciton States in Semiconductor Cavity Systems.
    Hughes S; Agarwal GS
    Phys Rev Lett; 2017 Feb; 118(6):063601. PubMed ID: 28234504
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrafast optical control of individual quantum dot spin qubits.
    De Greve K; Press D; McMahon PL; Yamamoto Y
    Rep Prog Phys; 2013 Sep; 76(9):092501. PubMed ID: 24006335
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical Transparency Induced by a Largely Purcell Enhanced Quantum Dot in a Polarization-Degenerate Cavity.
    Singh H; Farfurnik D; Luo Z; Bracker AS; Carter SG; Waks E
    Nano Lett; 2022 Oct; 22(19):7959-7964. PubMed ID: 36129824
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spin-resolved Purcell effect in a quantum dot microcavity system.
    Ren Q; Lu J; Tan HH; Wu S; Sun L; Zhou W; Xie W; Sun Z; Zhu Y; Jagadish C; Shen SC; Chen Z
    Nano Lett; 2012 Jul; 12(7):3455-9. PubMed ID: 22698083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlling spin relaxation with a cavity.
    Bienfait A; Pla JJ; Kubo Y; Zhou X; Stern M; Lo CC; Weis CD; Schenkel T; Vion D; Esteve D; Morton JJ; Bertet P
    Nature; 2016 Mar; 531(7592):74-7. PubMed ID: 26878235
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental Verification of the Very Strong Coupling Regime in a GaAs Quantum Well Microcavity.
    Brodbeck S; De Liberato S; Amthor M; Klaas M; Kamp M; Worschech L; Schneider C; Höfling S
    Phys Rev Lett; 2017 Jul; 119(2):027401. PubMed ID: 28753330
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of the strong light-matter interaction between an elongated In_{0.3}Ga_{0.7}As quantum dot and a micropillar cavity using external magnetic fields.
    Reitzenstein S; Münch S; Franeck P; Rahimi-Iman A; Löffler A; Höfling S; Worschech L; Forchel A
    Phys Rev Lett; 2009 Sep; 103(12):127401. PubMed ID: 19792457
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum nature of a strongly coupled single quantum dot-cavity system.
    Hennessy K; Badolato A; Winger M; Gerace D; Atatüre M; Gulde S; Fält S; Hu EL; Imamoğlu A
    Nature; 2007 Feb; 445(7130):896-9. PubMed ID: 17259971
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controlling cavity reflectivity with a single quantum dot.
    Englund D; Faraon A; Fushman I; Stoltz N; Petroff P; Vucković J
    Nature; 2007 Dec; 450(7171):857-61. PubMed ID: 18064008
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum Nonlinear Optics with Polar J-Aggregates in Microcavities.
    Herrera F; Peropadre B; Pachon LA; Saikin SK; Aspuru-Guzik A
    J Phys Chem Lett; 2014 Nov; 5(21):3708-15. PubMed ID: 26278740
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strong coupling in a single quantum dot-semiconductor microcavity system.
    Reithmaier JP; Sek G; Löffler A; Hofmann C; Kuhn S; Reitzenstein S; Keldysh LV; Kulakovskii VD; Reinecke TL; Forchel A
    Nature; 2004 Nov; 432(7014):197-200. PubMed ID: 15538362
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electron transport through a quantum dot assisted by cavity photons.
    Abdullah NR; Tang CS; Manolescu A; Gudmundsson V
    J Phys Condens Matter; 2013 Nov; 25(46):465302. PubMed ID: 24132041
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polarized emission of quantum dots in microcavity and anisotropic Purcell factors.
    Lee YS; Lin SD
    Opt Express; 2014 Jan; 22(2):1512-23. PubMed ID: 24515158
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime.
    Press D; Götzinger S; Reitzenstein S; Hofmann C; Löffler A; Kamp M; Forchel A; Yamamoto Y
    Phys Rev Lett; 2007 Mar; 98(11):117402. PubMed ID: 17501092
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The single quantum dot-laser: lasing and strong coupling in the high-excitation regime.
    Gies C; Florian M; Gartner P; Jahnke F
    Opt Express; 2011 Jul; 19(15):14370-88. PubMed ID: 21934800
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controllable radiation properties of a driven exciton-biexciton quantum dot couples to a graphene sheet.
    Fang W; Li GX; Yang Y
    Opt Express; 2018 Oct; 26(22):29561-29587. PubMed ID: 30470118
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantum information processing with single photons and atomic ensembles in microwave coplanar waveguide resonators.
    Petrosyan D; Fleischhauer M
    Phys Rev Lett; 2008 May; 100(17):170501. PubMed ID: 18518262
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast spin rotations by optically controlled geometric phases in a charge-tunable InAs quantum dot.
    Kim ED; Truex K; Xu X; Sun B; Steel DG; Bracker AS; Gammon D; Sham LJ
    Phys Rev Lett; 2010 Apr; 104(16):167401. PubMed ID: 20482081
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cavity-QED assisted attraction between a cavity mode and an exciton mode in a planar photonic-crystal cavity.
    Tawara T; Kamada H; Tanabe T; Sogawa T; Okamoto H; Yao P; Pathak PK; Hughes S
    Opt Express; 2010 Feb; 18(3):2719-28. PubMed ID: 20174101
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.