These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 30547984)

  • 1. High-contrast and low-power all-optical switch using Fano resonance based on a silicon nanobeam cavity.
    Dong G; Wang Y; Zhang X
    Opt Lett; 2018 Dec; 43(24):5977-5980. PubMed ID: 30547984
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultralow-energy and high-contrast all-optical switch involving Fano resonance based on coupled photonic crystal nanocavities.
    Nozaki K; Shinya A; Matsuo S; Sato T; Kuramochi E; Notomi M
    Opt Express; 2013 May; 21(10):11877-88. PubMed ID: 23736410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultra-compact multi-channel all-optical switches with improved switching dynamic characteristics.
    Dong G; Deng W; Hou J; Chen L; Zhang X
    Opt Express; 2018 Oct; 26(20):25630-25644. PubMed ID: 30469662
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultracompact optical switch using a single semisymmetric Fano nanobeam cavity.
    Cheng Z; Dong J; Zhang X
    Opt Lett; 2020 Apr; 45(8):2363-2366. PubMed ID: 32287233
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optically tunable Fano resonance in a grating-based Fabry-Perot cavity-coupled microring resonator on a silicon chip.
    Zhang W; Li W; Yao J
    Opt Lett; 2016 Jun; 41(11):2474-7. PubMed ID: 27244392
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultra-sharp asymmetric Fano-like resonance spectrum on Si photonic platform.
    Du H; Zhang W; Littlejohns CG; Stankovic S; Yan X; Tran DT; Sharp GJ; Gardes FY; Thomson DJ; Sorel M; Mashanovich GZ; Reed GT
    Opt Express; 2019 Mar; 27(5):7365-7372. PubMed ID: 30876301
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compact high-contrast silicon optical filter using all-passive and CROW Fano nanobeam resonators.
    Cheng Z; Zhang J; Dong J; Ding Y
    Opt Lett; 2021 Aug; 46(16):3873-3876. PubMed ID: 34388763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compact tunable electromagnetically induced transparency and Fano resonance on silicon platform.
    Zheng S; Ruan Z; Gao S; Long Y; Li S; He M; Zhou N; Du J; Shen L; Cai X; Wang J
    Opt Express; 2017 Oct; 25(21):25655-25662. PubMed ID: 29041230
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermally tunable ultracompact Fano resonator on a silicon photonic chip.
    Zhang W; Yao J
    Opt Lett; 2018 Nov; 43(21):5415-5418. PubMed ID: 30383021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Signal reshaping and noise suppression using photonic crystal Fano structures.
    Bekele DA; Yu Y; Hu H; Guan P; Galili M; Ottaviano L; Oxenløwe LK; Yvind K; Mork J
    Opt Express; 2018 Jul; 26(15):19596-19605. PubMed ID: 30114130
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrated photonic devices enabled by silicon traveling wave-like Fabry-Perot resonators.
    Liu Q; Zeng D; Mei C; Li H; Huang Q; Zhang X
    Opt Express; 2022 Mar; 30(6):9450-9462. PubMed ID: 35299372
    [TBL] [Abstract][Full Text] [Related]  

  • 12. T-shaped silicon waveguide coupled with a micro-ring resonator-based Fano resonance modulator.
    Xu Y; Lu L; Chen G; Liao J; Xu X; Ou J; Zhu L
    Appl Opt; 2022 Nov; 61(31):9217-9224. PubMed ID: 36607056
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Achieving Fano resonance with an ultra-high slope rate by silicon nitride CROW embedded in a Mach-Zehnder interferometer.
    Cheng W; Lin D; Liu P; Yun B; Lu M; Shi S; Hu G; Cui Y
    Opt Express; 2022 Dec; 30(26):46147-46156. PubMed ID: 36558576
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Silicon ring resonator-coupled Mach-Zehnder interferometers for the Fano resonance in the mid-IR.
    Troia B; Penades JS; Qu Z; Khokhar AZ; Osman A; Wu Y; Stirling C; Nedeljkovic M; Passaro VMN; Mashanovich GZ
    Appl Opt; 2017 Nov; 56(31):8769-8776. PubMed ID: 29091691
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crosstalk-free all-optical switching enabled by Fano resonance in a multi-mode photonic crystal nanocavity.
    Saudan Q; Bekele DA; Dong G; Yu Y; Yvind K; Mørk J; Galili M
    Opt Express; 2022 Feb; 30(5):7457-7466. PubMed ID: 35299507
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tunable Fano resonance with a high slope rate in a microring-resonator-coupled Mach-Zehnder interferometer.
    Liu X; Yu Y; Zhang X
    Opt Lett; 2019 Jan; 44(2):251-254. PubMed ID: 30644873
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced Fano resonances in a silicon nitride photonic crystal nanobeam-assisted micro ring resonator for dual telecom band operation.
    Mendoza-Castro JH; Vorobev AS; Iadanza S; Lendl B; O'Faolain L; Grande M
    Opt Express; 2024 Apr; 32(8):13197-13207. PubMed ID: 38859296
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrasensitive silicon photonic-crystal nanobeam electro-optical modulator: design and simulation.
    Hendrickson J; Soref R; Sweet J; Buchwald W
    Opt Express; 2014 Feb; 22(3):3271-83. PubMed ID: 24663618
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compact optical switch based on 2D photonic crystal and magneto-optical cavity.
    Dmitriev V; Kawakatsu MN; Portela G
    Opt Lett; 2013 Apr; 38(7):1016-8. PubMed ID: 23546228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved switching using Fano resonances in photonic crystal structures.
    Heuck M; Kristensen PT; Elesin Y; Mørk J
    Opt Lett; 2013 Jul; 38(14):2466-8. PubMed ID: 23939082
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.