These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 30548088)

  • 1. Micrometer-Sized Porous Fe
    Liu D; Xu X; Tan J; Zhu J; Li Q; Luo Y; Wu P; Zhang X; Han C; Mai L
    Small; 2019 Jan; 15(2):e1803572. PubMed ID: 30548088
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-Dimensional Double-Walled Ultrathin Graphite Tube Conductive Scaffold with Encapsulated Germanium Nanoparticles as a High-Areal-Capacity and Cycle-Stable Anode for Lithium-Ion Batteries.
    Mo R; Lei Z; Rooney D; Sun K
    ACS Nano; 2019 Jul; 13(7):7536-7544. PubMed ID: 31246005
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scalable Engineering of Bulk Porous Si Anodes for High Initial Efficiency and High-Areal-Capacity Lithium-Ion Batteries.
    Han X; Zhang Z; Zheng G; You R; Wang J; Li C; Chen S; Yang Y
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):714-721. PubMed ID: 30525409
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrahigh-Areal-Capacity Battery Anodes Enabled by Free-Standing Vanadium Nitride@N-Doped Carbon/Graphene Architecture.
    Li C; Zhu L; Qi S; Ge W; Ma W; Zhao Y; Huang R; Xu L; Qian Y
    ACS Appl Mater Interfaces; 2020 Nov; 12(44):49607-49616. PubMed ID: 33104326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Air-Stable Porous Fe
    Dong Y; Wang B; Zhao K; Yu Y; Wang X; Mai L; Jin S
    Nano Lett; 2017 Sep; 17(9):5740-5746. PubMed ID: 28817290
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultra-high Areal Capacity Realized in Three-Dimensional Holey Graphene/SnO
    Liang J; Sun H; Zhao Z; Wang Y; Feng Z; Zhu J; Guo L; Huang Y; Duan X
    iScience; 2019 Sep; 19():728-736. PubMed ID: 31476619
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tight Binding and Dual Encapsulation Enabled Stable Thick Silicon/Carbon Anode with Ultrahigh Volumetric Capacity for Lithium Storage.
    Zhang W; Gui S; Zhang Z; Li W; Wang X; Wei J; Tu S; Zhong L; Yang W; Ye H; Sun Y; Peng X; Huang J; Yang H
    Small; 2023 Nov; 19(48):e2303864. PubMed ID: 37525330
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonfilling carbon coating of porous silicon micrometer-sized particles for high-performance lithium battery anodes.
    Lu Z; Liu N; Lee HW; Zhao J; Li W; Li Y; Cui Y
    ACS Nano; 2015 Mar; 9(3):2540-7. PubMed ID: 25738223
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Folding Graphene Film Yields High Areal Energy Storage in Lithium-Ion Batteries.
    Wang B; Ryu J; Choi S; Song G; Hong D; Hwang C; Chen X; Wang B; Li W; Song HK; Park S; Ruoff RS
    ACS Nano; 2018 Feb; 12(2):1739-1746. PubMed ID: 29350526
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hollow/porous nanostructures derived from nanoscale metal-organic frameworks towards high performance anodes for lithium-ion batteries.
    Hu L; Chen Q
    Nanoscale; 2014; 6(3):1236-57. PubMed ID: 24356788
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Porous Carbon Nanofibers Encapsulated with Peapod-Like Hematite Nanoparticles for High-Rate and Long-Life Battery Anodes.
    Xia G; Gao Q; Sun D; Yu X
    Small; 2017 Nov; 13(44):. PubMed ID: 28722318
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Core-Shell Fe/Fe2 O3 Nanowire as a High-Performance Anode Material for Lithium-Ion Batteries.
    Na Z; Huang G; Liang F; Yin D; Wang L
    Chemistry; 2016 Aug; 22(34):12081-7. PubMed ID: 27406922
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robust Micron-Sized Silicon Secondary Particles Anchored by Polyimide as High-Capacity, High-Stability Li-Ion Battery Anode.
    Lee PK; Tan T; Wang S; Kang W; Lee CS; Yu DYW
    ACS Appl Mater Interfaces; 2018 Oct; 10(40):34132-34139. PubMed ID: 30213183
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Double-Holey-Heterostructure Frameworks Enable Fast, Stable, and Simultaneous Ultrahigh Gravimetric, Areal, and Volumetric Lithium Storage.
    Chen Z; Chen J; Bu F; Agboola PO; Shakir I; Xu Y
    ACS Nano; 2018 Dec; 12(12):12879-12887. PubMed ID: 30525431
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrating Dually Encapsulated Si Architecture and Dense Structural Engineering for Ultrahigh Volumetric and Areal Capacity of Lithium Storage.
    Liu Z; Lu D; Wang W; Yue L; Zhu J; Zhao L; Zheng H; Wang J; Li Y
    ACS Nano; 2022 Mar; 16(3):4642-4653. PubMed ID: 35254052
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In Situ Wrapping Si Nanoparticles with 2D Carbon Nanosheets as High-Areal-Capacity Anode for Lithium-Ion Batteries.
    Yan L; Liu J; Wang Q; Sun M; Jiang Z; Liang C; Pan F; Lin Z
    ACS Appl Mater Interfaces; 2017 Nov; 9(44):38159-38164. PubMed ID: 29053916
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dense T-Nb
    Liu F; Zhu Z; Chen Y; Meng J; Wang H; Yu R; Hong X; Wu J
    ACS Appl Mater Interfaces; 2022 Oct; ():. PubMed ID: 36308403
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MOF-derived ultrafine MnO nanocrystals embedded in a porous carbon matrix as high-performance anodes for lithium-ion batteries.
    Zheng F; Xia G; Yang Y; Chen Q
    Nanoscale; 2015 Jun; 7(21):9637-45. PubMed ID: 25955439
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facile Synthesis of Ultrasmall CoS2 Nanoparticles within Thin N-Doped Porous Carbon Shell for High Performance Lithium-Ion Batteries.
    Wang Q; Zou R; Xia W; Ma J; Qiu B; Mahmood A; Zhao R; Yang Y; Xia D; Xu Q
    Small; 2015 Jun; 11(21):2511-7. PubMed ID: 25688868
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advanced Li-Ion Batteries with High Rate, Stability, and Mass Loading Based on Graphene Ribbon Hybrid Networks.
    Zhang L; Wei T; Jiang Z; Fan Z
    Chemistry; 2019 Apr; 25(19):5022-5027. PubMed ID: 30697831
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.