These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Bacterial Spheroplasts as a Model for Visualizing Membrane Translocation of Antimicrobial Peptides. Wei L; LaBouyer MA; Darling LE; Elmore DE Antimicrob Agents Chemother; 2016 Oct; 60(10):6350-2. PubMed ID: 27431217 [TBL] [Abstract][Full Text] [Related]
6. Controlling the shape of filamentous cells of Escherichia coli. Takeuchi S; DiLuzio WR; Weibel DB; Whitesides GM Nano Lett; 2005 Sep; 5(9):1819-23. PubMed ID: 16159230 [TBL] [Abstract][Full Text] [Related]
7. Colanic Acid Intermediates Prevent De Novo Shape Recovery of Escherichia coli Spheroplasts, Calling into Question Biological Roles Previously Attributed to Colanic Acid. Ranjit DK; Young KD J Bacteriol; 2016 Apr; 198(8):1230-40. PubMed ID: 26833417 [TBL] [Abstract][Full Text] [Related]
8. PBP1B Glycosyltransferase and Transpeptidase Activities Play Different Essential Roles during the Ranjit DK; Jorgenson MA; Young KD J Bacteriol; 2017 Apr; 199(7):. PubMed ID: 28096447 [TBL] [Abstract][Full Text] [Related]
9. Chemoenzymatic Labeling of Proteins for Imaging in Bacterial Cells. Ho SH; Tirrell DA J Am Chem Soc; 2016 Nov; 138(46):15098-15101. PubMed ID: 27933886 [TBL] [Abstract][Full Text] [Related]
10. Using Synthetic Biology to Engineer Living Cells That Interface with Programmable Materials. Heyde KC; Scott FY; Paek SH; Zhang R; Ruder WC J Vis Exp; 2017 Mar; (121):. PubMed ID: 28362372 [TBL] [Abstract][Full Text] [Related]
12. Site-specific labeling of surface proteins on living cells using genetically encoded peptides that bind fluorescent nanoparticle probes. Rocco MA; Kim JY; Burns A; Kostecki J; Doody A; Wiesner U; DeLisa MP Bioconjug Chem; 2009 Aug; 20(8):1482-9. PubMed ID: 19650648 [TBL] [Abstract][Full Text] [Related]
13. Mode of Action of Antimicrobial Peptides on E. coli Spheroplasts. Sun Y; Sun TL; Huang HW Biophys J; 2016 Jul; 111(1):132-9. PubMed ID: 27410741 [TBL] [Abstract][Full Text] [Related]
14. High-throughput microfluidic system for long-term bacterial colony monitoring and antibiotic testing in zero-flow environments. Sun P; Liu Y; Sha J; Zhang Z; Tu Q; Chen P; Wang J Biosens Bioelectron; 2011 Jan; 26(5):1993-9. PubMed ID: 20880691 [TBL] [Abstract][Full Text] [Related]
15. Reconstitution of pole-to-pole oscillations of min proteins in microengineered polydimethylsiloxane compartments. Zieske K; Schwille P Angew Chem Int Ed Engl; 2013 Jan; 52(1):459-62. PubMed ID: 23184489 [TBL] [Abstract][Full Text] [Related]
16. Spheroplast-like structures in Escherichia coli demonstrated by scanning electron microscopy. Nishino T; Nakazawa S J Antibiot (Tokyo); 1972 Oct; 25(10):602-3. PubMed ID: 4567454 [No Abstract] [Full Text] [Related]
17. A comparative study of different dyes for the detection of proteomes derived from Escherichia coli and MDCK cells: sensitivity and selectivity. Chiangjong W; Thongboonkerd V J Chromatogr B Analyt Technol Biomed Life Sci; 2009 May; 877(14-15):1433-9. PubMed ID: 19342317 [TBL] [Abstract][Full Text] [Related]
18. A Fluorescent Sensor and Gel Stain for Detection of Pyrophosphorylated Proteins. Williams FJ; Fiedler D ACS Chem Biol; 2015 Sep; 10(9):1958-63. PubMed ID: 26061479 [TBL] [Abstract][Full Text] [Related]
19. Reconstitution of binding protein dependent ribose transport in spheroplasts derived from a binding protein negative Escherichia coli K12 mutant and from Salmonella typhimurium. Robb FT; Furlong CE J Supramol Struct; 1980; 13(2):183-90. PubMed ID: 6787346 [TBL] [Abstract][Full Text] [Related]
20. Comparison of the indentation and elasticity of E. coli and its spheroplasts by AFM. Sullivan CJ; Venkataraman S; Retterer ST; Allison DP; Doktycz MJ Ultramicroscopy; 2007 Oct; 107(10-11):934-42. PubMed ID: 17574761 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]