BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 30548341)

  • 1. Physiological responses of Chlorella sorokiniana to copper nanoparticles.
    Barreto DM; Tonietto AE; Amaral CDB; Pulgrossi RC; Polpo A; Nóbrega JA; Lombardi AT
    Environ Toxicol Chem; 2019 Feb; 38(2):387-395. PubMed ID: 30548341
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Higher biomolecules yield in phytoplankton under copper exposure.
    Silva JC; Echeveste P; Lombardi AT
    Ecotoxicol Environ Saf; 2018 Oct; 161():57-63. PubMed ID: 29859408
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Environmental concentrations of copper nanoparticles affect vital functions in Ankistrodesmus densus.
    Barreto DM; Tonietto AE; Lombardi AT
    Aquat Toxicol; 2021 Feb; 231():105720. PubMed ID: 33388614
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Uptake and toxicity of CuO nanoparticles to Daphnia magna varies between indirect dietary and direct waterborne exposures.
    Wu F; Bortvedt A; Harper BJ; Crandon LE; Harper SL
    Aquat Toxicol; 2017 Sep; 190():78-86. PubMed ID: 28697458
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combined effects of nanoplastics and copper on the freshwater alga Raphidocelis subcapitata.
    Bellingeri A; Bergami E; Grassi G; Faleri C; Redondo-Hasselerharm P; Koelmans AA; Corsi I
    Aquat Toxicol; 2019 May; 210():179-187. PubMed ID: 30870664
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensitivity of two green microalgae to copper stress: Growth, oxidative and antioxidants analyses.
    Hamed SM; Selim S; Klöck G; AbdElgawad H
    Ecotoxicol Environ Saf; 2017 Oct; 144():19-25. PubMed ID: 28599127
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cu and Cd affect distinctly the physiology of a cosmopolitan tropical freshwater phytoplankton.
    Echeveste P; Silva JC; Lombardi AT
    Ecotoxicol Environ Saf; 2017 Sep; 143():228-235. PubMed ID: 28551580
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Environmental safety data on CuO and TiO
    Joonas E; Aruoja V; Olli K; Kahru A
    Sci Total Environ; 2019 Jan; 647():973-980. PubMed ID: 30180372
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of transport and toxicity response of Chlorella sorokiniana to polystyrene nanoplastics.
    Xu M; Zhu F; Yang Y; Liu M; Li X; Jiang Y; Feng L; Duan J; Wang W; Yuan X; Zhang X
    Ecotoxicol Environ Saf; 2024 Jan; 270():115901. PubMed ID: 38157799
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of cadmium in the microalga Chlorella sorokiniana: A proteomic study.
    León-Vaz A; Romero LC; Gotor C; León R; Vigara J
    Ecotoxicol Environ Saf; 2021 Jan; 207():111301. PubMed ID: 32949933
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of copper on the photochemical efficiency, growth, and chlorophyll a biomass of natural phytoplankton assemblages.
    Pérez P; Estévez-Blanco P; Beiras R; Fernández E
    Environ Toxicol Chem; 2006 Jan; 25(1):137-43. PubMed ID: 16494234
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of copper-oxide nanoparticles, dissolved copper and ultraviolet radiation on copper bioaccumulation, photosynthesis and oxidative stress in the aquatic macrophyte Elodea nuttallii.
    Regier N; Cosio C; von Moos N; Slaveykova VI
    Chemosphere; 2015 Jun; 128():56-61. PubMed ID: 25655819
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toxicity of metal mixtures to a tropical freshwater alga (Chlorella sp): the effect of interactions between copper, cadmium, and zinc on metal cell binding and uptake.
    Franklin NM; Stauber JL; Lim RP; Petocz P
    Environ Toxicol Chem; 2002 Nov; 21(11):2412-22. PubMed ID: 12389921
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interactive effects of phosphorus and copper on Hyalella azteca via periphyton in aquatic ecosystems.
    Li M; Costello DM; Burton GA
    Ecotoxicol Environ Saf; 2012 Sep; 83():41-6. PubMed ID: 22738933
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Are the primary characteristics of polystyrene nanoplastics responsible for toxicity and ad/absorption in the marine diatom Phaeodactylum tricornutum?
    Sendra M; Staffieri E; Yeste MP; Moreno-Garrido I; Gatica JM; Corsi I; Blasco J
    Environ Pollut; 2019 Jun; 249():610-619. PubMed ID: 30933758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sublethal effects of copper sulphate compared to copper nanoparticles in rainbow trout (Oncorhynchus mykiss) at low pH: physiology and metal accumulation.
    Al-Bairuty GA; Boyle D; Henry TB; Handy RD
    Aquat Toxicol; 2016 May; 174():188-98. PubMed ID: 26966873
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differences in Engineered Nanoparticle Surface Physicochemistry Revealed by Investigation of Changes in Copper Bioavailability During Sorption to Nanoparticles in the Aqueous Phase.
    Patsiou D; Kalman J; Fernandes TF; Henry TB
    Environ Toxicol Chem; 2019 May; 38(5):925-935. PubMed ID: 30698850
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of pH on the uptake and toxicity of copper and zinc in a tropical freshwater alga (Chlorella sp.).
    Wilde KL; Stauber JL; Markich SJ; Franklin NM; Brown PL
    Arch Environ Contam Toxicol; 2006 Aug; 51(2):174-85. PubMed ID: 16583260
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toxicity of TiO
    Sendra M; Moreno-Garrido I; Yeste MP; Gatica JM; Blasco J
    Environ Pollut; 2017 Aug; 227():39-48. PubMed ID: 28454020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of a mixture of copper, nickel, and zinc on the structure and function of a freshwater planktonic community.
    Van Regenmortel T; Van de Perre D; Janssen CR; De Schamphelaere KAC
    Environ Toxicol Chem; 2018 Sep; 37(9):2380-2400. PubMed ID: 29870110
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.