These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
212 related articles for article (PubMed ID: 30549212)
1. The omnivorous predator Macrolophus pygmaeus, a good candidate for the control of both greenhouse whitefly and poinsettia thrips on gerbera plants. Leman A; Ingegno BL; Tavella L; Janssen A; Messelink GJ Insect Sci; 2020 Jun; 27(3):510-518. PubMed ID: 30549212 [TBL] [Abstract][Full Text] [Related]
2. Biological control of Echinothrips americanus by phytoseiid predatory mites and the effect of pollen as supplemental food. Ghasemzadeh S; Leman A; Messelink GJ Exp Appl Acarol; 2017 Oct; 73(2):209-221. PubMed ID: 29128983 [TBL] [Abstract][Full Text] [Related]
3. Combined Use of Predatory Mirids With Amblyseius swirskii (Acari: Phytoseiidae) to Enhance Pest Management in Sweet Pepper. Bouagga S; Urbaneja A; Pérez-Hedo M J Econ Entomol; 2018 May; 111(3):1112-1120. PubMed ID: 29596645 [TBL] [Abstract][Full Text] [Related]
5. Omnivore-herbivore interactions: thrips and whiteflies compete via the shared host plant. Pappas ML; Tavlaki G; Triantafyllou A; Broufas G Sci Rep; 2018 Mar; 8(1):3996. PubMed ID: 29507335 [TBL] [Abstract][Full Text] [Related]
6. The Occurrence of Apparent Competition and Apparent Mutualism in a Modeled Greenhouse System with Two Non-competing Pests and a Shared Biocontrol Agent. Costa MIS; Anjos L Neotrop Entomol; 2020 Dec; 49(6):874-881. PubMed ID: 33074444 [TBL] [Abstract][Full Text] [Related]
7. Selecting native perennial plants for ecological intensification in Mediterranean greenhouse horticulture. Rodríguez E; González M; Paredes D; Campos M; Benítez E Bull Entomol Res; 2018 Oct; 108(5):694-704. PubMed ID: 29198200 [TBL] [Abstract][Full Text] [Related]
8. Why are phytoseiid predatory mites not effectively controlling Echinothrips americanus? Vangansbeke D; Van Doren E; Duarte MVA; Pijnakker J; Wäckers F; De Clercq P Exp Appl Acarol; 2023 Jun; 90(1-2):1-17. PubMed ID: 37285108 [TBL] [Abstract][Full Text] [Related]
9. Egg Predation by Phytoseiid Predatory Mites: Is There Intraguild Predation Towards Predatory Bug Eggs? Vangansbeke D; Duarte MVA; Pijnakker J; Pekas A; Wäckers F J Econ Entomol; 2022 Aug; 115(4):1087-1094. PubMed ID: 35707949 [TBL] [Abstract][Full Text] [Related]
10. Doru luteipes (Dermaptera: Forficulidae) and Orius insidiosus (Hemiptera: Anthocoridae) as Nocturnal and Diurnal Predators of Thrips. Silva LP; Souza IL; Marucci RC; Guzman-Martinez M Neotrop Entomol; 2023 Apr; 52(2):263-272. PubMed ID: 35831705 [TBL] [Abstract][Full Text] [Related]
11. Delphastus catalinae and Coleomegilla maculata lengi (Coleoptera: Coccinellidae) as biological control agents of the greenhouse whitefly, trialeurodes vaporariorum (Homoptera: Aleyrodidae). Lucas E; Labrecque C; Coderre D Pest Manag Sci; 2004 Nov; 60(11):1073-8. PubMed ID: 15532680 [TBL] [Abstract][Full Text] [Related]
12. Effect of a plant fortifier (Boundary) on pests and predators of greenhouse vegetable crops. Sannino L; Piro F Nat Prod Res; 2015; 29(23):2233-7. PubMed ID: 25631629 [TBL] [Abstract][Full Text] [Related]
13. Modelling the interaction between a pest (Aculops lycopersici), two predators (Pronematus ubiquitus and Macrolophus pygmaeus) and climate variables: a 3-year greenhouse study in a tomato crop. Moerkens R; Vangansbeke D; Duarte MVA; Bellinkx S; De Roo E; Pijnakker J; Wäckers F Pest Manag Sci; 2023 Dec; 79(12):5362-5373. PubMed ID: 37632129 [TBL] [Abstract][Full Text] [Related]
14. Trophic relationships between predators, whiteflies and their parasitoids in tomato greenhouses: a molecular approach. Moreno-Ripoll R; Gabarra R; Symondson WO; King RA; Agustí N Bull Entomol Res; 2012 Aug; 102(4):415-23. PubMed ID: 22314013 [TBL] [Abstract][Full Text] [Related]
15. Effects of far-red light on the behaviour and reproduction of the zoophytophagous predator Macrolophus pygmaeus and its interaction with a whitefly herbivore. Meijer D; Hopkoper S; Weldegergis BT; Westende WV; Gort G; van Loon JJA; Dicke M Plant Cell Environ; 2024 Jan; 47(1):187-196. PubMed ID: 37705240 [TBL] [Abstract][Full Text] [Related]
16. Cadmium contamination triggers negative bottom-up effects on the growth and reproduction of Frankliniella occidentalis (Thysanoptera: Thripidae) without disrupting the foraging behavior of its predator, Orius sauteri (Heteroptera: Anthocoridae). Liu J; Di N; Zhang K; Trumble JT; Zhu Z; Wang S; Zang L Environ Sci Pollut Res Int; 2023 Mar; 30(15):43126-43136. PubMed ID: 36648731 [TBL] [Abstract][Full Text] [Related]
17. Preference and prey switching in a generalist predator attacking local and invasive alien pests. Jaworski CC; Bompard A; Genies L; Amiens-Desneux E; Desneux N PLoS One; 2013; 8(12):e82231. PubMed ID: 24312646 [TBL] [Abstract][Full Text] [Related]
19. The efficiency of Amblyseius swirskii in control of Tetranychus urticae and Trialeurodes vaporariorum is affected by various factors. Mortazavi N; Fathipour Y; Talebi AA Bull Entomol Res; 2019 Jun; 109(3):365-375. PubMed ID: 30160229 [TBL] [Abstract][Full Text] [Related]