These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 30549262)

  • 1. Social cues affect quantitative genetic variation and covariation in animal personality traits.
    Rudin FS; Simmons LW; Tomkins JL
    Evolution; 2019 Mar; 73(3):540-553. PubMed ID: 30549262
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Complex genotype by environment interactions and changing genetic architectures across thermal environments in the Australian field cricket, Teleogryllus oceanicus.
    Nystrand M; Dowling DK; Simmons LW
    BMC Evol Biol; 2011 Jul; 11():222. PubMed ID: 21791118
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phenotypic variation and covariation indicate high evolvability of acoustic communication in crickets.
    Blankers T; Lübke AK; Hennig RM
    J Evol Biol; 2015 Sep; 28(9):1656-69. PubMed ID: 26134540
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sexual selection and population divergence I: The influence of socially flexible cuticular hydrocarbon expression in male field crickets (Teleogryllus oceanicus).
    Pascoal S; Mendrok M; Mitchell C; Wilson AJ; Hunt J; Bailey NW
    Evolution; 2016 Jan; 70(1):82-97. PubMed ID: 26678168
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The importance of listening: juvenile allocation shifts in response to acoustic cues of the social environment.
    Kasumovic MM; Hall MD; Try H; Brooks RC
    J Evol Biol; 2011 Jun; 24(6):1325-34. PubMed ID: 21457172
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heritability and social brood effects on personality in juvenile and adult life-history stages in a wild passerine.
    Winney IS; Schroeder J; Nakagawa S; Hsu YH; Simons MJP; Sánchez-Tójar A; Mannarelli ME; Burke T
    J Evol Biol; 2018 Jan; 31(1):75-87. PubMed ID: 29044885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sexual signal loss: The link between behaviour and rapid evolutionary dynamics in a field cricket.
    Zuk M; Bailey NW; Gray B; Rotenberry JT
    J Anim Ecol; 2018 May; 87(3):623-633. PubMed ID: 29417997
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sex-specific genotype-by-environment interactions for cuticular hydrocarbon expression in decorated crickets, Gryllodes sigillatus: implications for the evolution of signal reliability.
    Weddle CB; Mitchell C; Bay SK; Sakaluk SK; Hunt J
    J Evol Biol; 2012 Oct; 25(10):2112-2125. PubMed ID: 22900500
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acoustic experience shapes alternative mating tactics and reproductive investment in male field crickets.
    Bailey NW; Gray B; Zuk M
    Curr Biol; 2010 May; 20(9):845-9. PubMed ID: 20417103
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Socially flexible female choice differs among populations of the Pacific field cricket: geographical variation in the interaction coefficient psi (Ψ).
    Bailey NW; Zuk M
    Proc Biol Sci; 2012 Sep; 279(1742):3589-96. PubMed ID: 22648156
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein deprivation facilitates the independent evolution of behavior and morphology.
    Han CS; Gosden TP; Dingemanse NJ
    Evolution; 2019 Sep; 73(9):1809-1820. PubMed ID: 31318455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid evolutionary change in a sexual signal: genetic control of the mutation 'flatwing' that renders male field crickets (Teleogryllus oceanicus) mute.
    Tinghitella RM
    Heredity (Edinb); 2008 Mar; 100(3):261-7. PubMed ID: 18000520
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Repeatable and heritable behavioural variation in a wild cooperative breeder.
    Edwards HA; Burke T; Dugdale HL
    Behav Ecol; 2017; 28(3):668-676. PubMed ID: 29622921
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exposure to sexual signals during rearing increases immune defence in adult field crickets.
    Bailey NW; Gray B; Zuk M
    Biol Lett; 2011 Apr; 7(2):217-20. PubMed ID: 20810430
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Asymmetric mating preferences accommodated the rapid evolutionary loss of a sexual signal.
    Tinghitella RM; Zuk M
    Evolution; 2009 Aug; 63(8):2087-98. PubMed ID: 19473387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cuticular hydrocarbons are heritable in the cricket Teleogryllus oceanicus.
    Thomas ML; Simmons LW
    J Evol Biol; 2008 May; 21(3):801-6. PubMed ID: 18355187
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The evolution of polyandry: patterns of genotypic variation in female mating frequency, male fertilization success and a test of the sexy-sperm hypothesis.
    Simmons LW
    J Evol Biol; 2003 Jul; 16(4):624-34. PubMed ID: 14632226
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative genetics of the use of conspecific and heterospecific social cues for breeding site choice.
    Tolvanen J; Kivelä SM; Doligez B; Morinay J; Gustafsson L; Bijma P; Pakanen VM; Forsman JT
    Evolution; 2020 Oct; 74(10):2332-2347. PubMed ID: 32725635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Island hopping introduces Polynesian field crickets to novel environments, genetic bottlenecks and rapid evolution.
    Tinghitella RM; Zuk M; Beveridge M; Simmons LW
    J Evol Biol; 2011 Jun; 24(6):1199-211. PubMed ID: 21418117
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sexual selection and population divergence II. Divergence in different sexual traits and signal modalities in field crickets (Teleogryllus oceanicus).
    Pascoal S; Mendrok M; Wilson AJ; Hunt J; Bailey NW
    Evolution; 2017 Jun; 71(6):1614-1626. PubMed ID: 28369840
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.