These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
799 related articles for article (PubMed ID: 30550232)
1. Emodin Reduces the Activity of (1,3)- Janeczko M Pol J Microbiol; 2018; 67(4):463-470. PubMed ID: 30550232 [TBL] [Abstract][Full Text] [Related]
2. Identification of New Antifungal Agents Targeting Chitin Synthesis by a Chemical-Genetic Method. Li Y; Sun H; Zhu X; Bian C; Wang Y; Si S Molecules; 2019 Aug; 24(17):. PubMed ID: 31470665 [TBL] [Abstract][Full Text] [Related]
3. Specific substitutions in the echinocandin target Fks1p account for reduced susceptibility of rare laboratory and clinical Candida sp. isolates. Park S; Kelly R; Kahn JN; Robles J; Hsu MJ; Register E; Li W; Vyas V; Fan H; Abruzzo G; Flattery A; Gill C; Chrebet G; Parent SA; Kurtz M; Teppler H; Douglas CM; Perlin DS Antimicrob Agents Chemother; 2005 Aug; 49(8):3264-73. PubMed ID: 16048935 [TBL] [Abstract][Full Text] [Related]
4. Antifungal Activity of Salvia miltiorrhiza Against Candida albicans Is Associated with the Alteration of Membrane Permeability and (1,3)-β-D-Glucan Synthase Activity. Lee HS; Kim Y J Microbiol Biotechnol; 2016 Mar; 26(3):610-7. PubMed ID: 26699747 [TBL] [Abstract][Full Text] [Related]
6. Dynamic, morphotype-specific Candida albicans beta-glucan exposure during infection and drug treatment. Wheeler RT; Kombe D; Agarwala SD; Fink GR PLoS Pathog; 2008 Dec; 4(12):e1000227. PubMed ID: 19057660 [TBL] [Abstract][Full Text] [Related]
7. Piperazine propanol derivative as a novel antifungal targeting 1,3-beta-D-glucan synthase. Kondoh O; Inagaki Y; Fukuda H; Mizuguchi E; Ohya Y; Arisawa M; Shimma N; Aoki Y; Sakaitani M; Watanabe T Biol Pharm Bull; 2005 Nov; 28(11):2138-41. PubMed ID: 16272705 [TBL] [Abstract][Full Text] [Related]
8. Synergy of the antibiotic colistin with echinocandin antifungals in Candida species. Zeidler U; Bougnoux ME; Lupan A; Helynck O; Doyen A; Garcia Z; Sertour N; Clavaud C; Munier-Lehmann H; Saveanu C; d'Enfert C J Antimicrob Chemother; 2013 Jun; 68(6):1285-96. PubMed ID: 23378416 [TBL] [Abstract][Full Text] [Related]
9. Caspofungin resistance in Candida albicans: genetic factors and synergistic compounds for combination therapies. Perrine-Walker F Braz J Microbiol; 2022 Sep; 53(3):1101-1113. PubMed ID: 35352319 [TBL] [Abstract][Full Text] [Related]
10. Changes in the proteome of Candida albicans in response to azole, polyene, and echinocandin antifungal agents. Hoehamer CF; Cummings ED; Hilliard GM; Rogers PD Antimicrob Agents Chemother; 2010 May; 54(5):1655-64. PubMed ID: 20145080 [TBL] [Abstract][Full Text] [Related]
11. Paradoxical growth of Candida albicans in the presence of caspofungin is associated with multiple cell wall rearrangements and decreased virulence. Rueda C; Cuenca-Estrella M; Zaragoza O Antimicrob Agents Chemother; 2014; 58(2):1071-83. PubMed ID: 24295973 [TBL] [Abstract][Full Text] [Related]
12. Discovery of novel antifungal (1,3)-beta-D-glucan synthase inhibitors. Onishi J; Meinz M; Thompson J; Curotto J; Dreikorn S; Rosenbach M; Douglas C; Abruzzo G; Flattery A; Kong L; Cabello A; Vicente F; Pelaez F; Diez MT; Martin I; Bills G; Giacobbe R; Dombrowski A; Schwartz R; Morris S; Harris G; Tsipouras A; Wilson K; Kurtz MB Antimicrob Agents Chemother; 2000 Feb; 44(2):368-77. PubMed ID: 10639364 [TBL] [Abstract][Full Text] [Related]
13. Acquired resistance to echinocandins in Candida albicans: case report and review. Baixench MT; Aoun N; Desnos-Ollivier M; Garcia-Hermoso D; Bretagne S; Ramires S; Piketty C; Dannaoui E J Antimicrob Chemother; 2007 Jun; 59(6):1076-83. PubMed ID: 17468115 [TBL] [Abstract][Full Text] [Related]
14. Comparative Analysis of the Aspergillus fumigatus Cell Wall Modification and Ensuing Human Dendritic Cell Responses by β-(1,3)-Glucan Synthase Inhibitors-Caspofungin and Enfumafungin. Guilloux K; Hegde P; Wong SSW; Aimanianda V; Bayry J; Latgé JP Mycopathologia; 2024 Sep; 189(5):86. PubMed ID: 39302505 [TBL] [Abstract][Full Text] [Related]
15. Posaconazole exhibits in vitro and in vivo synergistic antifungal activity with caspofungin or FK506 against Candida albicans. Chen YL; Lehman VN; Averette AF; Perfect JR; Heitman J PLoS One; 2013; 8(3):e57672. PubMed ID: 23472097 [TBL] [Abstract][Full Text] [Related]
16. Nanoscale effects of caspofungin against two yeast species, Saccharomyces cerevisiae and Candida albicans. Formosa C; Schiavone M; Martin-Yken H; François JM; Duval RE; Dague E Antimicrob Agents Chemother; 2013 Aug; 57(8):3498-506. PubMed ID: 23669379 [TBL] [Abstract][Full Text] [Related]
17. Micafungin Enhances the Human Macrophage Response to Candida albicans through β-Glucan Exposure. Guirao-Abad JP; Sánchez-Fresneda R; Machado F; Argüelles JC; Martínez-Esparza M Antimicrob Agents Chemother; 2018 May; 62(5):. PubMed ID: 29483123 [TBL] [Abstract][Full Text] [Related]
18. Analysis of the Localization of San-Quirico E; Curto MÁ; Gómez-Delgado L; Moreno MB; Pérez P; Ribas JC; Cortés JCG Int J Mol Sci; 2023 Feb; 24(5):. PubMed ID: 36901728 [TBL] [Abstract][Full Text] [Related]
19. In vitro activity of caspofungin (MK-0991) against Candida albicans clinical isolates displaying different mechanisms of azole resistance. Bachmann SP; Patterson TF; López-Ribot JL J Clin Microbiol; 2002 Jun; 40(6):2228-30. PubMed ID: 12037093 [TBL] [Abstract][Full Text] [Related]
20. Mechanisms of echinocandin antifungal drug resistance. Perlin DS Ann N Y Acad Sci; 2015 Sep; 1354(1):1-11. PubMed ID: 26190298 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]