These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 30550291)

  • 1. Antimony Nanorod Encapsulated in Cross-Linked Carbon for High-Performance Sodium Ion Battery Anodes.
    Cui C; Xu J; Zhang Y; Wei Z; Mao M; Lian X; Wang S; Yang C; Fan X; Ma J; Wang C
    Nano Lett; 2019 Jan; 19(1):538-544. PubMed ID: 30550291
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hexagonal Sb Nanocrystals as High-Capacity and Long-Cycle Anode Materials for Sodium-Ion Batteries.
    Zhang N; Chen X; Xu J; He P; Ding X
    ACS Appl Mater Interfaces; 2023 Jun; 15(22):26728-26736. PubMed ID: 37218657
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sodium/Lithium storage behavior of antimony hollow nanospheres for rechargeable batteries.
    Hou H; Jing M; Yang Y; Zhu Y; Fang L; Song W; Pan C; Yang X; Ji X
    ACS Appl Mater Interfaces; 2014 Sep; 6(18):16189-96. PubMed ID: 25140456
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antimony Nanocrystals Encapsulated in Carbon Microspheres Synthesized by a Facile Self-Catalyzing Solvothermal Method for High-Performance Sodium-Ion Battery Anodes.
    Qiu S; Wu X; Xiao L; Ai X; Yang H; Cao Y
    ACS Appl Mater Interfaces; 2016 Jan; 8(2):1337-43. PubMed ID: 26710079
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploration of electrochemical behavior of Sb-based porous carbon composites anode for sodium-ion batteries.
    Ma G; Xu C; Zhang D; Che S; Wang Y; Yang J; Chen K; Sun Y; Liu S; Fu J; Zhou Z; Qu Y; Ding C; Li Y
    J Colloid Interface Sci; 2024 Jun; 673():26-36. PubMed ID: 38870665
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemically Engineering Antimony Interspersed on Graphene toward Advanced Sodium-Storage Anodes.
    Shuai H; Liu H; Li J; Fang S; Xu L; Yang Y; Hou H; Zou G; Hu J; Ji X
    Inorg Chem; 2021 Aug; 60(16):12526-12535. PubMed ID: 34337950
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitrogen doped porous carbon coated antimony as high performance anode material for sodium-ion batteries.
    Luo X; Tan H; Ma T; Wang H; Lv M; Yu Z; Fu C; Chang X; Jin S
    Nanotechnology; 2021 May; 32(31):. PubMed ID: 33848983
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrospun Sb/C fibers for a stable and fast sodium-ion battery anode.
    Zhu Y; Han X; Xu Y; Liu Y; Zheng S; Xu K; Hu L; Wang C
    ACS Nano; 2013 Jul; 7(7):6378-86. PubMed ID: 23802576
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrahigh Rate Performance of Hollow Antimony Nanoparticles Impregnated in Open Carbon Boxes for Sodium-Ion Battery under Elevated Temperature.
    Xu A; Xia Q; Zhang S; Duan H; Yan Y; Wu S
    Small; 2019 Nov; 15(45):e1903521. PubMed ID: 31532895
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Melt-Spun Fe-Sb Intermetallic Alloy Anode for Performance Enhanced Sodium-Ion Batteries.
    Edison E; Sreejith S; Madhavi S
    ACS Appl Mater Interfaces; 2017 Nov; 9(45):39399-39406. PubMed ID: 29090906
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graphene-Protected 3D Sb-based Anodes Fabricated via Electrostatic Assembly and Confinement Replacement for Enhanced Lithium and Sodium Storage.
    Ding YL; Wu C; Kopold P; van Aken PA; Maier J; Yu Y
    Small; 2015 Dec; 11(45):6026-35. PubMed ID: 26456169
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Achieving Stable and Ultrafast Potassium Storage of Antimony Anode via Dual Confinement of MXene@Carbon Framework.
    Tian X; Zhang P; Liao Y; Soomro RA; Xu B
    Small Methods; 2023 Aug; 7(8):e2201525. PubMed ID: 36825657
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bismuth-Antimony Alloy Embedded in Carbon Matrix for Ultra-Stable Sodium Storage.
    Ma W; Yu B; Tan F; Gao H; Zhang Z
    Materials (Basel); 2023 Mar; 16(6):. PubMed ID: 36984069
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-Capacity Sb/Fe
    Chu Y; Wang P; Ding Y; Lin J; Zhu X; Zhao S; Jin H; Zeng T
    ACS Appl Mater Interfaces; 2023 May; 15(20):24354-24365. PubMed ID: 37167087
    [TBL] [Abstract][Full Text] [Related]  

  • 15. One-Dimensional Rod-Like Sb₂S₃-Based Anode for High-Performance Sodium-Ion Batteries.
    Hou H; Jing M; Huang Z; Yang Y; Zhang Y; Chen J; Wu Z; Ji X
    ACS Appl Mater Interfaces; 2015 Sep; 7(34):19362-9. PubMed ID: 26284385
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rational Design of Sb@C@TiO
    Kong M; Liu Y; Zhou B; Yang K; Tang J; Zhang P; Zhang WH
    Small; 2020 Oct; 16(43):e2001976. PubMed ID: 32985102
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rayleigh-Instability-Induced Bismuth Nanorod@Nitrogen-Doped Carbon Nanotubes as A Long Cycling and High Rate Anode for Sodium-Ion Batteries.
    Xue P; Wang N; Fang Z; Lu Z; Xu X; Wang L; Du Y; Ren X; Bai Z; Dou S; Yu G
    Nano Lett; 2019 Mar; 19(3):1998-2004. PubMed ID: 30727727
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monodisperse antimony nanocrystals for high-rate Li-ion and Na-ion battery anodes: nano versus bulk.
    He M; Kravchyk K; Walter M; Kovalenko MV
    Nano Lett; 2014 Mar; 14(3):1255-62. PubMed ID: 24484409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microsized Antimony as a Stable Anode in Fluoroethylene Carbonate Containing Electrolytes for Rechargeable Lithium-/Sodium-Ion Batteries.
    Bian X; Dong Y; Zhao D; Ma X; Qiu M; Xu J; Jiao L; Cheng F; Zhang N
    ACS Appl Mater Interfaces; 2020 Jan; 12(3):3554-3562. PubMed ID: 31886641
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bismuth-Antimony Alloy Nanoparticle@Porous Carbon Nanosheet Composite Anode for High-Performance Potassium-Ion Batteries.
    Xiong P; Wu J; Zhou M; Xu Y
    ACS Nano; 2020 Jan; 14(1):1018-1026. PubMed ID: 31860268
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.