These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Integrating in-situ, Landsat, and MODIS data for mapping in Southern African savannas: experiences of LCCS-based land-cover mapping in the Kalahari in Namibia. Hüttich C; Herold M; Strohbach BJ; Dech S Environ Monit Assess; 2011 May; 176(1-4):531-47. PubMed ID: 20635199 [TBL] [Abstract][Full Text] [Related]
23. Climatic controls of vegetation vigor in four contrasting forest types of India--evaluation from National Oceanic and Atmospheric Administration's Advanced Very High Resolution Radiometer datasets (1990-2000). Prasad VK; Anuradha E; Badarinath KV Int J Biometeorol; 2005 Sep; 50(1):6-16. PubMed ID: 15902506 [TBL] [Abstract][Full Text] [Related]
24. Mapping precipitation-corrected NDVI trends across Namibia. Wingate VR; Phinn SR; Kuhn N Sci Total Environ; 2019 Sep; 684():96-112. PubMed ID: 31153083 [TBL] [Abstract][Full Text] [Related]
25. Inter-annual variations of vegetation dynamics to climate change in Ordos, Inner Mongolia, China. Jia X; You G; McKenzie S; Zou C; Gao J; Wang A PLoS One; 2022; 17(11):e0264263. PubMed ID: 36331953 [TBL] [Abstract][Full Text] [Related]
26. Effects of Climate Change on Land Cover Change and Vegetation Dynamics in Xinjiang, China. Yu H; Bian Z; Mu S; Yuan J; Chen F Int J Environ Res Public Health; 2020 Jul; 17(13):. PubMed ID: 32640654 [TBL] [Abstract][Full Text] [Related]
27. Productivity and phenological responses of natural vegetation to present and future inter-annual climate variability across semi-arid river basins in Chile. Glade FE; Miranda MD; Meza FJ; van Leeuwen WJ Environ Monit Assess; 2016 Dec; 188(12):676. PubMed ID: 27858259 [TBL] [Abstract][Full Text] [Related]
28. Vegetation structure and greenness in Central Africa from Modis multi-temporal data. Gond V; Fayolle A; Pennec A; Cornu G; Mayaux P; Camberlin P; Doumenge C; Fauvet N; Gourlet-Fleury S Philos Trans R Soc Lond B Biol Sci; 2013; 368(1625):20120309. PubMed ID: 23878336 [TBL] [Abstract][Full Text] [Related]
29. Trend shifts in satellite-derived vegetation growth in Central Eurasia, 1982-2013. Xu HJ; Wang XP; Yang TB Sci Total Environ; 2017 Feb; 579():1658-1674. PubMed ID: 27919557 [TBL] [Abstract][Full Text] [Related]
30. Environmental drivers behind the exceptional increase in cyanobacterial blooms in Okavango Delta, Botswana. Veerman J; Mishra DR; Kumar A; Karidozo M Harmful Algae; 2024 Aug; 137():102677. PubMed ID: 39003028 [TBL] [Abstract][Full Text] [Related]
31. Assessment and statistical modeling of the relationship between remotely sensed aerosol optical depth and PM2.5 in the eastern United States. Paciorek CJ; Liu Y; Res Rep Health Eff Inst; 2012 May; (167):5-83; discussion 85-91. PubMed ID: 22838153 [TBL] [Abstract][Full Text] [Related]
32. Spatiotemporal changes and driving factors of vegetation in 14 different climatic regions in the global from 1981 to 2018. Li G; Chen W; Zhang X; Yang Z; Wang Z; Bi P Environ Sci Pollut Res Int; 2022 Oct; 29(50):75322-75337. PubMed ID: 35650342 [TBL] [Abstract][Full Text] [Related]
33. What determines tree mortality in dry environments? A multi-perspective approach. Dorman M; Svoray T; Perevolotsky A; Moshe Y; Sarris D Ecol Appl; 2015 Jun; 25(4):1054-71. PubMed ID: 26465042 [TBL] [Abstract][Full Text] [Related]
34. Trends in Global Vegetation Activity and Climatic Drivers Indicate a Decoupled Response to Climate Change. Schut AG; Ivits E; Conijn JG; Ten Brink B; Fensholt R PLoS One; 2015; 10(10):e0138013. PubMed ID: 26466347 [TBL] [Abstract][Full Text] [Related]
35. Climate change drives NDVI variations at multiple spatiotemporal levels rather than human disturbance in Northwest China. Shang J; Zhang Y; Peng Y; Huang Y; Zhu L; Wu Z; Wang J; Cui Y Environ Sci Pollut Res Int; 2022 Feb; 29(10):13782-13796. PubMed ID: 34599448 [TBL] [Abstract][Full Text] [Related]
36. Analysing the spatio-temporal patterns of vegetation dynamics and their responses to climatic parameters in Meghalaya from 2001 to 2020. Bhuyan M; Singh B; Vid S; Jeganathan C Environ Monit Assess; 2022 Nov; 195(1):94. PubMed ID: 36355248 [TBL] [Abstract][Full Text] [Related]
37. Analysis of spatial and temporal changes in vegetation cover and its drivers in the Aksu River Basin, China. Ding Y; Feng Y; Chen K; Zhang X Sci Rep; 2024 May; 14(1):10165. PubMed ID: 38702367 [TBL] [Abstract][Full Text] [Related]
38. Determining the K coefficient to leaf area index estimations in a tropical dry forest. Magalhães SF; Calvo-Rodriguez S; do Espírito Santo MM; Sánchez Azofeifa GA Int J Biometeorol; 2018 Jul; 62(7):1187-1197. PubMed ID: 29546488 [TBL] [Abstract][Full Text] [Related]
39. Assessment of Climate Change and Human Activities on Vegetation Development in Northeast China. Xue L; Kappas M; Wyss D; Wang C; Putzenlechner B; Thi NP; Chen J Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408124 [TBL] [Abstract][Full Text] [Related]
40. Forest biomass estimation using remote sensing and field inventory: a case study of Tripura, India. Pandey PC; Srivastava PK; Chetri T; Choudhary BK; Kumar P Environ Monit Assess; 2019 Aug; 191(9):593. PubMed ID: 31456055 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]