BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

448 related articles for article (PubMed ID: 30550751)

  • 41. Inhibition of Drp1 protects against senecionine-induced mitochondria-mediated apoptosis in primary hepatocytes and in mice.
    Yang X; Wang H; Ni HM; Xiong A; Wang Z; Sesaki H; Ding WX; Yang L
    Redox Biol; 2017 Aug; 12():264-273. PubMed ID: 28282614
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Transgenic mice expressing mutated full-length HD cDNA: a paradigm for locomotor changes and selective neuronal loss in Huntington's disease.
    Reddy PH; Charles V; Williams M; Miller G; Whetsell WO; Tagle DA
    Philos Trans R Soc Lond B Biol Sci; 1999 Jun; 354(1386):1035-45. PubMed ID: 10434303
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A conserved, noncanonical insert in FIS1 mediates TBC1D15 and DRP1 recruitment for mitochondrial fission.
    Ihenacho UK; Toro R; Mansour RH; Hill RB
    J Biol Chem; 2023 Nov; 299(11):105303. PubMed ID: 37777154
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Mutant huntingtin, abnormal mitochondrial dynamics, defective axonal transport of mitochondria, and selective synaptic degeneration in Huntington's disease.
    Reddy PH; Shirendeb UP
    Biochim Biophys Acta; 2012 Feb; 1822(2):101-10. PubMed ID: 22080977
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Amelioration of Huntington's disease phenotype in astrocytes derived from iPSC-derived neural progenitor cells of Huntington's disease monkeys.
    Cho IK; Yang B; Forest C; Qian L; Chan AWS
    PLoS One; 2019; 14(3):e0214156. PubMed ID: 30897183
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Dynamin-related protein 1: A critical protein in the pathogenesis of neural system dysfunctions and neurodegenerative diseases.
    Qi Z; Huang Z; Xie F; Chen L
    J Cell Physiol; 2019 Jul; 234(7):10032-10046. PubMed ID: 30515821
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Bcl-2/adenovirus E1B 19-kDa interacting protein (BNip3) has a key role in the mitochondrial dysfunction induced by mutant huntingtin.
    Sassone F; Margulets V; Maraschi A; Rodighiero S; Passafaro M; Silani V; Ciammola A; Kirshenbaum LA; Sassone J
    Hum Mol Genet; 2015 Nov; 24(22):6530-9. PubMed ID: 26358776
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Involvement of CRMP2 in Regulation of Mitochondrial Morphology and Motility in Huntington's Disease.
    Brustovetsky T; Khanna R; Brustovetsky N
    Cells; 2021 Nov; 10(11):. PubMed ID: 34831395
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Dynamin-related protein 1 and mitochondrial fragmentation in neurodegenerative diseases.
    Reddy PH; Reddy TP; Manczak M; Calkins MJ; Shirendeb U; Mao P
    Brain Res Rev; 2011 Jun; 67(1-2):103-18. PubMed ID: 21145355
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Insulin and IGF-1 improve mitochondrial function in a PI-3K/Akt-dependent manner and reduce mitochondrial generation of reactive oxygen species in Huntington's disease knock-in striatal cells.
    Ribeiro M; Rosenstock TR; Oliveira AM; Oliveira CR; Rego AC
    Free Radic Biol Med; 2014 Sep; 74():129-44. PubMed ID: 24992836
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Small-molecule suppression of calpastatin degradation reduces neuropathology in models of Huntington's disease.
    Hu D; Sun X; Magpusao A; Fedorov Y; Thompson M; Wang B; Lundberg K; Adams DJ; Qi X
    Nat Commun; 2021 Sep; 12(1):5305. PubMed ID: 34489447
    [TBL] [Abstract][Full Text] [Related]  

  • 52. PINK1-induced mitophagy promotes neuroprotection in Huntington's disease.
    Khalil B; El Fissi N; Aouane A; Cabirol-Pol MJ; Rival T; Liévens JC
    Cell Death Dis; 2015 Jan; 6(1):e1617. PubMed ID: 25611391
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Nature and cause of mitochondrial dysfunction in Huntington's disease: focusing on huntingtin and the striatum.
    Oliveira JM
    J Neurochem; 2010 Jul; 114(1):1-12. PubMed ID: 20403078
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mutant huntingtin causes context-dependent neurodegeneration in mice with Huntington's disease.
    Yu ZX; Li SH; Evans J; Pillarisetti A; Li H; Li XJ
    J Neurosci; 2003 Mar; 23(6):2193-202. PubMed ID: 12657678
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Fine-tuning of Drp1/Fis1 availability by AKAP121/Siah2 regulates mitochondrial adaptation to hypoxia.
    Kim H; Scimia MC; Wilkinson D; Trelles RD; Wood MR; Bowtell D; Dillin A; Mercola M; Ronai ZA
    Mol Cell; 2011 Nov; 44(4):532-44. PubMed ID: 22099302
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Identification of Novel Therapeutic Targets for Polyglutamine Diseases That Target Mitochondrial Fragmentation.
    Traa A; Machiela E; Rudich PD; Soo SK; Senchuk MM; Van Raamsdonk JM
    Int J Mol Sci; 2021 Dec; 22(24):. PubMed ID: 34948242
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Cardiac dysfunction in the R6/2 mouse model of Huntington's disease.
    Mihm MJ; Amann DM; Schanbacher BL; Altschuld RA; Bauer JA; Hoyt KR
    Neurobiol Dis; 2007 Feb; 25(2):297-308. PubMed ID: 17126554
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Juvenile Huntington's Disease Skin Fibroblasts Respond with Elevated Parkin Level and Increased Proteasome Activity as a Potential Mechanism to Counterbalance the Pathological Consequences of Mutant Huntingtin Protein.
    Aladdin A; Király R; Boto P; Regdon Z; Tar K
    Int J Mol Sci; 2019 Oct; 20(21):. PubMed ID: 31717806
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mitochondria in Huntington's disease.
    Damiano M; Galvan L; Déglon N; Brouillet E
    Biochim Biophys Acta; 2010 Jan; 1802(1):52-61. PubMed ID: 19682570
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Astrocytes generated from patient induced pluripotent stem cells recapitulate features of Huntington's disease patient cells.
    Juopperi TA; Kim WR; Chiang CH; Yu H; Margolis RL; Ross CA; Ming GL; Song H
    Mol Brain; 2012 May; 5():17. PubMed ID: 22613578
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.