These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 30550771)

  • 1. Modulation of vitamin D signaling by the pioneer factor CEBPA.
    Nurminen V; Neme A; Seuter S; Carlberg C
    Biochim Biophys Acta Gene Regul Mech; 2019 Jan; 1862(1):96-106. PubMed ID: 30550771
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vitamin D Signaling in the Context of Innate Immunity: Focus on Human Monocytes.
    Carlberg C
    Front Immunol; 2019; 10():2211. PubMed ID: 31572402
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Epigenomic PU.1-VDR crosstalk modulates vitamin D signaling.
    Seuter S; Neme A; Carlberg C
    Biochim Biophys Acta Gene Regul Mech; 2017 Apr; 1860(4):405-415. PubMed ID: 28232093
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ETS transcription factor family member GABPA contributes to vitamin D receptor target gene regulation.
    Seuter S; Neme A; Carlberg C
    J Steroid Biochem Mol Biol; 2018 Mar; 177():46-52. PubMed ID: 28870774
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A hierarchical regulatory network analysis of the vitamin D induced transcriptome reveals novel regulators and complete VDR dependency in monocytes.
    Warwick T; Schulz MH; Günther S; Gilsbach R; Neme A; Carlberg C; Brandes RP; Seuter S
    Sci Rep; 2021 Mar; 11(1):6518. PubMed ID: 33753848
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The impact of the vitamin D-modulated epigenome on VDR target gene regulation.
    Nurminen V; Neme A; Seuter S; Carlberg C
    Biochim Biophys Acta Gene Regul Mech; 2018 Aug; 1861(8):697-705. PubMed ID: 30018005
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics of 1α,25-dihydroxyvitamin D3-dependent chromatin accessibility of early vitamin D receptor target genes.
    Seuter S; Pehkonen P; Heikkinen S; Carlberg C
    Biochim Biophys Acta; 2013 Dec; 1829(12):1266-75. PubMed ID: 24185200
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The vitamin D-dependent transcriptome of human monocytes.
    Neme A; Nurminen V; Seuter S; Carlberg C
    J Steroid Biochem Mol Biol; 2016 Nov; 164():180-187. PubMed ID: 26523676
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular endocrinology of vitamin D on the epigenome level.
    Carlberg C
    Mol Cell Endocrinol; 2017 Sep; 453():14-21. PubMed ID: 28315703
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Primary Vitamin D Target Genes of Human Monocytes.
    Nurminen V; Seuter S; Carlberg C
    Front Physiol; 2019; 10():194. PubMed ID: 30890957
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective regulation of biological processes by vitamin D based on the spatio-temporal cistrome of its receptor.
    Neme A; Seuter S; Carlberg C
    Biochim Biophys Acta Gene Regul Mech; 2017 Sep; 1860(9):952-961. PubMed ID: 28712921
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The ASAP2 gene is a primary target of 1,25-dihydroxyvitamin D3 in human monocytes and macrophages.
    Seuter S; Ryynänen J; Carlberg C
    J Steroid Biochem Mol Biol; 2014 Oct; 144 Pt A():12-8. PubMed ID: 23999061
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vitamin D-dependent chromatin association of CTCF in human monocytes.
    Neme A; Seuter S; Carlberg C
    Biochim Biophys Acta; 2016 Nov; 1859(11):1380-1388. PubMed ID: 27569350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 1,25-Dihydroxyvitamin D3 stimulates cyclic vitamin D receptor/retinoid X receptor DNA-binding, co-activator recruitment, and histone acetylation in intact osteoblasts.
    Kim S; Shevde NK; Pike JW
    J Bone Miner Res; 2005 Feb; 20(2):305-17. PubMed ID: 15647825
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine learning approaches infer vitamin D signaling: Critical impact of vitamin D receptor binding within topologically associated domains.
    Carlberg C; Neme A
    J Steroid Biochem Mol Biol; 2019 Jan; 185():103-109. PubMed ID: 30044963
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Key Vitamin D Target Genes with Functions in the Immune System.
    Koivisto O; Hanel A; Carlberg C
    Nutrients; 2020 Apr; 12(4):. PubMed ID: 32325790
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of 1α,25-Dihydroxyvitamin D3 in Adipogenesis of SGBS Cells: New Insights into Human Preadipocyte Proliferation.
    Felicidade I; Sartori D; Coort SLM; Semprebon SC; Niwa AM; D'Epiro GFR; Biazi BI; Marques LA; Evelo CT; Mantovani MS; Ribeiro LR
    Cell Physiol Biochem; 2018; 48(1):397-408. PubMed ID: 30016791
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The vitamin D hormone and its nuclear receptor: molecular actions and disease states.
    Haussler MR; Haussler CA; Jurutka PW; Thompson PD; Hsieh JC; Remus LS; Selznick SH; Whitfield GK
    J Endocrinol; 1997 Sep; 154 Suppl():S57-73. PubMed ID: 9379138
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vitamin D and Aging: Central Role of Immunocompetence.
    Carlberg C; Velleuer E
    Nutrients; 2024 Jan; 16(3):. PubMed ID: 38337682
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Epigenome-wide effects of vitamin D and their impact on the transcriptome of human monocytes involve CTCF.
    Seuter S; Neme A; Carlberg C
    Nucleic Acids Res; 2016 May; 44(9):4090-104. PubMed ID: 26715761
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.