These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 30550884)
1. Proteomic analyses reveal lower expression of TEX40 and ATP6V0A2 proteins related to calcium ion entry and acrosomal acidification in asthenozoospermic males. Sinha A; Singh V; Singh S; Yadav S Life Sci; 2019 Feb; 218():81-88. PubMed ID: 30550884 [TBL] [Abstract][Full Text] [Related]
2. Proteomic profile of human spermatozoa in healthy and asthenozoospermic individuals. Cao X; Cui Y; Zhang X; Lou J; Zhou J; Bei H; Wei R Reprod Biol Endocrinol; 2018 Feb; 16(1):16. PubMed ID: 29482568 [TBL] [Abstract][Full Text] [Related]
3. A quantitative global proteomics approach to understanding the functional pathways dysregulated in the spermatozoa of asthenozoospermic testicular cancer patients. Panner Selvam MK; Agarwal A; Pushparaj PN Andrology; 2019 Jul; 7(4):454-462. PubMed ID: 30924599 [TBL] [Abstract][Full Text] [Related]
4. Down-regulation of CatSper1 channel in epididymal spermatozoa contributes to the pathogenesis of asthenozoospermia, whereas up-regulation of the channel by Sheng-Jing-San treatment improves the sperm motility of asthenozoospermia in rats. Wang YN; Wang B; Liang M; Han CY; Zhang B; Cai J; Sun W; Xing GG Fertil Steril; 2013 Feb; 99(2):579-87. PubMed ID: 23148924 [TBL] [Abstract][Full Text] [Related]
6. Quantification of CatSper1 expression in human spermatozoa and relation to functional parameters. Tamburrino L; Marchiani S; Vicini E; Muciaccia B; Cambi M; Pellegrini S; Forti G; Muratori M; Baldi E Hum Reprod; 2015 Jul; 30(7):1532-44. PubMed ID: 25983333 [TBL] [Abstract][Full Text] [Related]
7. Identification of several proteins involved in regulation of sperm motility by proteomic analysis. Zhao C; Huo R; Wang FQ; Lin M; Zhou ZM; Sha JH Fertil Steril; 2007 Feb; 87(2):436-8. PubMed ID: 17074334 [TBL] [Abstract][Full Text] [Related]
8. Identification of proteomic differences in asthenozoospermic sperm samples. Martínez-Heredia J; de Mateo S; Vidal-Taboada JM; Ballescà JL; Oliva R Hum Reprod; 2008 Apr; 23(4):783-91. PubMed ID: 18281682 [TBL] [Abstract][Full Text] [Related]
9. Comparative proteomic study between human normal motility sperm and idiopathic asthenozoospermia. Shen S; Wang J; Liang J; He D World J Urol; 2013 Dec; 31(6):1395-401. PubMed ID: 23455884 [TBL] [Abstract][Full Text] [Related]
10. Identification of proteins involved in human sperm motility using high-throughput differential proteomics. Amaral A; Paiva C; Attardo Parrinello C; Estanyol JM; Ballescà JL; Ramalho-Santos J; Oliva R J Proteome Res; 2014 Dec; 13(12):5670-84. PubMed ID: 25250979 [TBL] [Abstract][Full Text] [Related]
11. Sperm phosphoproteome profiling by ultra performance liquid chromatography followed by data independent analysis (LC-MS(E)) reveals altered proteomic signatures in asthenozoospermia. Parte PP; Rao P; Redij S; Lobo V; D'Souza SJ; Gajbhiye R; Kulkarni V J Proteomics; 2012 Oct; 75(18):5861-71. PubMed ID: 22796355 [TBL] [Abstract][Full Text] [Related]
12. Angiotensin II type 2 receptor is expressed in human sperm cells and is involved in sperm motility. Gianzo M; Muñoa-Hoyos I; Urizar-Arenaza I; Larreategui Z; Quintana F; Garrido N; Subirán N; Irazusta J Fertil Steril; 2016 Mar; 105(3):608-616. PubMed ID: 26616438 [TBL] [Abstract][Full Text] [Related]
13. The expression of cysteine-rich secretory protein 2 (CRISP2) and its specific regulator miR-27b in the spermatozoa of patients with asthenozoospermia. Zhou JH; Zhou QZ; Lyu XM; Zhu T; Chen ZJ; Chen MK; Xia H; Wang CY; Qi T; Li X; Liu CD Biol Reprod; 2015 Jan; 92(1):28. PubMed ID: 25505194 [TBL] [Abstract][Full Text] [Related]
14. Systematic characterization of human testis-specific actin capping protein β3 as a possible biomarker for male infertility. Soda T; Miyagawa Y; Ueda N; Takezawa K; Okuda H; Fukuhara S; Fujita K; Kiuchi H; Uemura M; Okamoto Y; Tsujimura A; Tanaka H; Nonomura N Hum Reprod; 2017 Mar; 32(3):514-522. PubMed ID: 28104696 [TBL] [Abstract][Full Text] [Related]
15. Asthenozoospermia and membrane remodeling enzymes: a new role for phospholipase A2. Anfuso CD; Olivieri M; Bellanca S; Salmeri M; Motta C; Scalia M; Satriano C; La Vignera S; Burrello N; Caporarello N; Lupo G; Calogero AE Andrology; 2015 Nov; 3(6):1173-82. PubMed ID: 26446356 [TBL] [Abstract][Full Text] [Related]
16. Proteomic Analyses of Human Sperm Cells: Understanding the Role of Proteins and Molecular Pathways Affecting Male Reproductive Health. Agarwal A; Panner Selvam MK; Baskaran S Int J Mol Sci; 2020 Feb; 21(5):. PubMed ID: 32120839 [TBL] [Abstract][Full Text] [Related]
17. Sperm mitochondrial dysfunction and oxidative stress as possible reasons for isolated asthenozoospermia. Nowicka-Bauer K; Lepczynski A; Ozgo M; Kamieniczna M; Fraczek M; Stanski L; Olszewska M; Malcher A; Skrzypczak W; Kurpisz MK J Physiol Pharmacol; 2018 Jun; 69(3):. PubMed ID: 30149371 [TBL] [Abstract][Full Text] [Related]
18. Proteomic pattern changes associated with obesity-induced asthenozoospermia. Liu Y; Guo Y; Song N; Fan Y; Li K; Teng X; Guo Q; Ding Z Andrology; 2015 Mar; 3(2):247-59. PubMed ID: 25293813 [TBL] [Abstract][Full Text] [Related]
19. Involvement of sperm plasma membrane and cytoskeletal proteins in human male infertility. Salvolini E; Buldreghini E; Lucarini G; Vignini A; Lenzi A; Di Primio R; Balercia G Fertil Steril; 2013 Mar; 99(3):697-704. PubMed ID: 23174138 [TBL] [Abstract][Full Text] [Related]
20. [Expression of TEKT4 protein decreases in the ejaculated spermatozoa of idiopathic asthenozoospermic men]. Wu WB; Li YS; Ji XF; Wang QX; Gao XM; Yang XF; Pan ZH; Feng XX Zhonghua Nan Ke Xue; 2012 Jun; 18(6):514-7. PubMed ID: 22774605 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]