These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
280 related articles for article (PubMed ID: 30551095)
41. Impact of two arbuscular mycorrhizal fungi on Arundo donax L. response to salt stress. Pollastri S; Savvides A; Pesando M; Lumini E; Volpe MG; Ozudogru EA; Faccio A; De Cunzo F; Michelozzi M; Lambardi M; Fotopoulos V; Loreto F; Centritto M; Balestrini R Planta; 2018 Mar; 247(3):573-585. PubMed ID: 29124326 [TBL] [Abstract][Full Text] [Related]
42. Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots. Feng G; Zhang FS; Li XL; Tian CY; Tang C; Rengel Z Mycorrhiza; 2002 Aug; 12(4):185-90. PubMed ID: 12189473 [TBL] [Abstract][Full Text] [Related]
43. Phosphorus fertilization and mycorrhizal colonization change silver nanoparticle impacts on maize. Wang F; Li K; Shi Z Ecotoxicology; 2021 Jan; 30(1):118-129. PubMed ID: 33141388 [TBL] [Abstract][Full Text] [Related]
44. Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi. Jiang Y; Wang W; Xie Q; Liu N; Liu L; Wang D; Zhang X; Yang C; Chen X; Tang D; Wang E Science; 2017 Jun; 356(6343):1172-1175. PubMed ID: 28596307 [TBL] [Abstract][Full Text] [Related]
45. Plant-fungus competition for nitrogen erases mycorrhizal growth benefits of Andropogon gerardii under limited nitrogen supply. Püschel D; Janoušková M; Hujslová M; Slavíková R; Gryndlerová H; Jansa J Ecol Evol; 2016 Jul; 6(13):4332-46. PubMed ID: 27386079 [TBL] [Abstract][Full Text] [Related]
46. Effectiveness of arbuscular mycorrhizal fungi in phytoremediation of lead- contaminated soil by vetiver grass. Bahraminia M; Zarei M; Ronaghi A; Ghasemi-Fasaei R Int J Phytoremediation; 2016; 18(7):730-7. PubMed ID: 26709443 [TBL] [Abstract][Full Text] [Related]
47. Impact of Phosphatic Nutrition on Growth Parameters and Artemisinin Production in Todeschini V; Anastasia F; Massa N; Marsano F; Cesaro P; Bona E; Gamalero E; Oddi L; Lingua G Life (Basel); 2022 Mar; 12(4):. PubMed ID: 35454988 [No Abstract] [Full Text] [Related]
48. Mycorrhiza symbiosis increases the surface for sunlight capture in Medicago truncatula for better photosynthetic production. Adolfsson L; Solymosi K; Andersson MX; Keresztes Á; Uddling J; Schoefs B; Spetea C PLoS One; 2015; 10(1):e0115314. PubMed ID: 25615871 [TBL] [Abstract][Full Text] [Related]
49. The role of mycorrhizal symbiosis in aluminum and phosphorus interactions in relation to aluminum tolerance in soybean. Zhang S; Zhou J; Wang G; Wang X; Liao H Appl Microbiol Biotechnol; 2015 Dec; 99(23):10225-35. PubMed ID: 26278539 [TBL] [Abstract][Full Text] [Related]
50. Shedding light onto nutrient responses of arbuscular mycorrhizal plants: nutrient interactions may lead to unpredicted outcomes of the symbiosis. Corrêa A; Cruz C; Pérez-Tienda J; Ferrol N Plant Sci; 2014 May; 221-222():29-41. PubMed ID: 24656333 [TBL] [Abstract][Full Text] [Related]
51. Diet of Arbuscular Mycorrhizal Fungi: Bread and Butter? Rich MK; Nouri E; Courty PE; Reinhardt D Trends Plant Sci; 2017 Aug; 22(8):652-660. PubMed ID: 28622919 [TBL] [Abstract][Full Text] [Related]
52. Superoxide dismutase and total peroxidase activities in relation to drought recovery performance of mycorrhizal shrub seedlings grown in an amended semiarid soil. Roldán A; Díaz-Vivancos P; Hernández JA; Carrasco L; Caravaca F J Plant Physiol; 2008 May; 165(7):715-22. PubMed ID: 17913291 [TBL] [Abstract][Full Text] [Related]
53. Plant species differ in early seedling growth and tissue nutrient responses to arbuscular and ectomycorrhizal fungi. Holste EK; Kobe RK; Gehring CA Mycorrhiza; 2017 Apr; 27(3):211-223. PubMed ID: 27838856 [TBL] [Abstract][Full Text] [Related]
54. Effects of two contrasted arbuscular mycorrhizal fungal isolates on nutrient uptake by Sorghum bicolor under drought. Symanczik S; Lehmann MF; Wiemken A; Boller T; Courty PE Mycorrhiza; 2018 Nov; 28(8):779-785. PubMed ID: 30006910 [TBL] [Abstract][Full Text] [Related]
55. Functional compatibility in cucumber mycorrhizas in terms of plant growth performance and foliar nutrient composition. Ravnskov S; Larsen J Plant Biol (Stuttg); 2016 Sep; 18(5):816-23. PubMed ID: 27094118 [TBL] [Abstract][Full Text] [Related]
56. Inoculation with arbuscular mycorrhizal fungi improves the nutritional value of tomatoes. Hart M; Ehret DL; Krumbein A; Leung C; Murch S; Turi C; Franken P Mycorrhiza; 2015 Jul; 25(5):359-76. PubMed ID: 25391485 [TBL] [Abstract][Full Text] [Related]
57. Effects of Wu F; Li Z; Lin Y; Zhang L Can J Microbiol; 2021 May; 67(5):349-357. PubMed ID: 33769090 [TBL] [Abstract][Full Text] [Related]
58. Increasing phosphorus supply is not the mechanism by which arbuscular mycorrhiza increase attractiveness of bean (Vicia faba) to aphids. Babikova Z; Gilbert L; Randall KC; Bruce TJ; Pickett JA; Johnson D J Exp Bot; 2014 Oct; 65(18):5231-41. PubMed ID: 25200735 [TBL] [Abstract][Full Text] [Related]
59. Arbuscular mycorrhizal fungi alleviate arsenic toxicity to Medicago sativa by influencing arsenic speciation and partitioning. Li J; Sun Y; Jiang X; Chen B; Zhang X Ecotoxicol Environ Saf; 2018 Aug; 157():235-243. PubMed ID: 29625397 [TBL] [Abstract][Full Text] [Related]
60. Arbuscular Mycorrhiza Stimulates Biological Nitrogen Fixation in Two Püschel D; Janoušková M; Voříšková A; Gryndlerová H; Vosátka M; Jansa J Front Plant Sci; 2017; 8():390. PubMed ID: 28396674 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]