BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 30551175)

  • 41. Screening of CRISPR/Cas base editors to target the AMD high-risk Y402H complement factor H variant.
    Tran MTN; Khalid MKNM; Pébay A; Cook AL; Liang HH; Wong RCB; Craig JE; Liu GS; Hung SS; Hewitt AW
    Mol Vis; 2019; 25():174-182. PubMed ID: 30996586
    [TBL] [Abstract][Full Text] [Related]  

  • 42. CRISPR-Based Genome Editing as a New Therapeutic Tool in Retinal Diseases.
    Rasoulinejad SA; Maroufi F
    Mol Biotechnol; 2021 Sep; 63(9):768-779. PubMed ID: 34057656
    [TBL] [Abstract][Full Text] [Related]  

  • 43. CRISPR/Cas9 in Genome Editing and Beyond.
    Wang H; La Russa M; Qi LS
    Annu Rev Biochem; 2016 Jun; 85():227-64. PubMed ID: 27145843
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Design and Assembly of CRISPR/Cas9 Lentiviral and rAAV Vectors for Targeted Genome Editing.
    Sandoval IM; Collier TJ; Manfredsson FP
    Methods Mol Biol; 2019; 1937():29-45. PubMed ID: 30706388
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Highly efficient gene inactivation by adenoviral CRISPR/Cas9 in human primary cells.
    Voets O; Tielen F; Elstak E; Benschop J; Grimbergen M; Stallen J; Janssen R; van Marle A; Essrich C
    PLoS One; 2017; 12(8):e0182974. PubMed ID: 28800587
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Dead Cas Systems: Types, Principles, and Applications.
    Brezgin S; Kostyusheva A; Kostyushev D; Chulanov V
    Int J Mol Sci; 2019 Nov; 20(23):. PubMed ID: 31801211
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A Compact, High-Accuracy Cas9 with a Dinucleotide PAM for In Vivo Genome Editing.
    Edraki A; Mir A; Ibraheim R; Gainetdinov I; Yoon Y; Song CQ; Cao Y; Gallant J; Xue W; Rivera-Pérez JA; Sontheimer EJ
    Mol Cell; 2019 Feb; 73(4):714-726.e4. PubMed ID: 30581144
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Refined sgRNA efficacy prediction improves large- and small-scale CRISPR-Cas9 applications.
    Labuhn M; Adams FF; Ng M; Knoess S; Schambach A; Charpentier EM; Schwarzer A; Mateo JL; Klusmann JH; Heckl D
    Nucleic Acids Res; 2018 Feb; 46(3):1375-1385. PubMed ID: 29267886
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Computational design of anti-CRISPR proteins with improved inhibition potency.
    Mathony J; Harteveld Z; Schmelas C; Upmeier Zu Belzen J; Aschenbrenner S; Sun W; Hoffmann MD; Stengl C; Scheck A; Georgeon S; Rosset S; Wang Y; Grimm D; Eils R; Correia BE; Niopek D
    Nat Chem Biol; 2020 Jul; 16(7):725-730. PubMed ID: 32284602
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Method for Dual Viral Vector Mediated CRISPR-Cas9 Gene Disruption in Primary Human Endothelial Cells.
    Gong H; Liu M; Klomp J; Merrill BJ; Rehman J; Malik AB
    Sci Rep; 2017 Feb; 7():42127. PubMed ID: 28198371
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Gene Manipulation Using Fusion Guide RNAs for Cas9 and Cas12a.
    Shin HR; Kweon J; Kim Y
    Methods Mol Biol; 2021; 2162():185-193. PubMed ID: 32926383
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Towards mastering CRISPR-induced gene knock-in in plants: Survey of key features and focus on the model Physcomitrella patens.
    Collonnier C; Guyon-Debast A; Maclot F; Mara K; Charlot F; Nogué F
    Methods; 2017 May; 121-122():103-117. PubMed ID: 28478103
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Application of CRISPR-Cas9-Mediated Genome Editing for the Treatment of Myotonic Dystrophy Type 1.
    Marsh S; Hanson B; Wood MJA; Varela MA; Roberts TC
    Mol Ther; 2020 Dec; 28(12):2527-2539. PubMed ID: 33171139
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Advances with using CRISPR/Cas-mediated gene editing to treat infections with hepatitis B virus and hepatitis C virus.
    Moyo B; Bloom K; Scott T; Ely A; Arbuthnot P
    Virus Res; 2018 Jan; 244():311-320. PubMed ID: 28087399
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Latest Developed Strategies to Minimize the Off-Target Effects in CRISPR-Cas-Mediated Genome Editing.
    Naeem M; Majeed S; Hoque MZ; Ahmad I
    Cells; 2020 Jul; 9(7):. PubMed ID: 32630835
    [TBL] [Abstract][Full Text] [Related]  

  • 56. High-Performance Allosteric Conditional Guide RNAs for Mammalian Cell-Selective Regulation of CRISPR/Cas.
    Hochrein LM; Li H; Pierce NA
    ACS Synth Biol; 2021 May; 10(5):964-971. PubMed ID: 33930275
    [TBL] [Abstract][Full Text] [Related]  

  • 57. An Era of CRISPR/ Cas9 Mediated Plant Genome Editing.
    Khurshid H; Jan SA; Shinwari ZK; Jamal M; Shah SH
    Curr Issues Mol Biol; 2018; 26():47-54. PubMed ID: 28879855
    [TBL] [Abstract][Full Text] [Related]  

  • 58. CRISPR/Cas9 Guide RNA Design Rules for Predicting Activity.
    Hiranniramol K; Chen Y; Wang X
    Methods Mol Biol; 2020; 2115():351-364. PubMed ID: 32006410
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Exploration of Microbial Diversity to Discover Novel Molecular Technologies.
    Zhang F
    Keio J Med; 2019; 68(1):26. PubMed ID: 30905885
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A lentivirus-based system for Cas9/gRNA expression and subsequent removal by Cre-mediated recombination.
    Carpenter MA; Law EK; Serebrenik A; Brown WL; Harris RS
    Methods; 2019 Mar; 156():79-84. PubMed ID: 30578845
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.