These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 30551488)
1. A simple and rapid-acting approach for the reduction of C-reactive protein. Momtazi-Borojeni AA; Ayati SH; Jaafari MR; Sahebkar A Biomed Pharmacother; 2019 Jan; 109():2305-2308. PubMed ID: 30551488 [TBL] [Abstract][Full Text] [Related]
2. A simple and effective approach for the treatment of dyslipidemia using anionic nanoliposomes. Sahebkar A; Badiee A; Ghayour-Mobarhan M; Goldouzian SR; Jaafari MR Colloids Surf B Biointerfaces; 2014 Oct; 122():645-652. PubMed ID: 25139293 [TBL] [Abstract][Full Text] [Related]
3. Negatively-charged Liposome Nanoparticles Can Prevent Dyslipidemia and Atherosclerosis Progression in the Rabbit Model. Momtazi-Borojeni AA; Abdollahi E; Jaafari MR; Banach M; Watts GF; Sahebkar A Curr Vasc Pharmacol; 2022; 20(1):69-76. PubMed ID: 34414873 [TBL] [Abstract][Full Text] [Related]
4. Apolipoprotein B-100-targeted negatively charged nanoliposomes for the treatment of dyslipidemia. Sahebkar A; Badiee A; Hatamipour M; Ghayour-Mobarhan M; Jaafari MR Colloids Surf B Biointerfaces; 2015 May; 129():71-8. PubMed ID: 25829129 [TBL] [Abstract][Full Text] [Related]
5. Specific binding of human C-reactive protein towards supported monolayers of binary and engineered phospholipids. Goda T; Miyahara Y Colloids Surf B Biointerfaces; 2018 Jan; 161():662-669. PubMed ID: 29172154 [TBL] [Abstract][Full Text] [Related]
6. Anionic 1,2-distearoyl-sn-glycero-3-phosphoglycerol (DSPG) liposomes induce antigen-specific regulatory T cells and prevent atherosclerosis in mice. Benne N; van Duijn J; Lozano Vigario F; Leboux RJT; van Veelen P; Kuiper J; Jiskoot W; Slütter B J Control Release; 2018 Dec; 291():135-146. PubMed ID: 30365993 [TBL] [Abstract][Full Text] [Related]
7. 2-Dioleoyl-sn-glycero-3-phosphocholine-based nanoliposomes as an effective delivery platform for 17β-estradiol. Bowey K; Tanguay JF; Tabrizian M Eur J Pharm Biopharm; 2014 Apr; 86(3):369-75. PubMed ID: 24161656 [TBL] [Abstract][Full Text] [Related]
8. Preparation and evaluation of Munekane M; Mori H; Takada N; Sano K; Yamasaki T; Tanaka T; Sasaki N; Rikitake Y; Mukai T Nucl Med Biol; 2023; 126-127():108388. PubMed ID: 37804560 [TBL] [Abstract][Full Text] [Related]
9. Development of 111In-labeled liposomes for vulnerable atherosclerotic plaque imaging. Ogawa M; Umeda IO; Kosugi M; Kawai A; Hamaya Y; Takashima M; Yin H; Kudoh T; Seno M; Magata Y J Nucl Med; 2014 Jan; 55(1):115-20. PubMed ID: 24337605 [TBL] [Abstract][Full Text] [Related]
10. A simple passive equilibration method for loading carboplatin into pre-formed liposomes incubated with ethanol as a temperature dependent permeability enhancer. Wehbe M; Malhotra A; Anantha M; Roosendaal J; Leung AWY; Plackett D; Edwards K; Gilabert-Oriol R; Bally MB J Control Release; 2017 Apr; 252():50-61. PubMed ID: 28286316 [TBL] [Abstract][Full Text] [Related]
11. Calcein release behavior from liposomal bilayer; influence of physicochemical/mechanical/structural properties of lipids. Maherani B; Arab-Tehrany E; Kheirolomoom A; Geny D; Linder M Biochimie; 2013 Nov; 95(11):2018-33. PubMed ID: 23871914 [TBL] [Abstract][Full Text] [Related]
12. C-reactive protein binds to both oxidized LDL and apoptotic cells through recognition of a common ligand: Phosphorylcholine of oxidized phospholipids. Chang MK; Binder CJ; Torzewski M; Witztum JL Proc Natl Acad Sci U S A; 2002 Oct; 99(20):13043-8. PubMed ID: 12244213 [TBL] [Abstract][Full Text] [Related]
13. Study on the in situ aggregation of liposomes with negatively charged phospholipids for use as injectable depot formulation. Rahnfeld L; Thamm J; Steiniger F; van Hoogevest P; Luciani P Colloids Surf B Biointerfaces; 2018 Aug; 168():10-17. PubMed ID: 29478769 [TBL] [Abstract][Full Text] [Related]
14. Effect of phospholipid composition on pharmacokinetics and biodistribution of epirubicin liposomes. Sha X; Guo J; Chen Y; Fang X J Liposome Res; 2012 Mar; 22(1):80-8. PubMed ID: 22022836 [TBL] [Abstract][Full Text] [Related]
15. How do the physicochemical properties of nanoliposomes affect their interactions with the hCMEC/D3 cellular model of the BBB? Papadia K; Markoutsa E; Antimisiaris SG Int J Pharm; 2016 Jul; 509(1-2):431-438. PubMed ID: 27286634 [TBL] [Abstract][Full Text] [Related]
16. Calcium-independent binding of human C-reactive protein to lysophosphatidylcholine in supported planar phospholipid monolayers. Goda T; Miyahara Y Acta Biomater; 2017 Jan; 48():206-214. PubMed ID: 27815167 [TBL] [Abstract][Full Text] [Related]
17. Phosphatidylcholine-rich nanoliposomes: potential tools for serum C-reactive protein reduction? Sahebkar A Cardiovasc Drugs Ther; 2011 Feb; 25(1):105-6. PubMed ID: 21210202 [No Abstract] [Full Text] [Related]
18. Molecular volumes of DOPC and DOPS in mixed bilayers of multilamellar vesicles. Murugova TN; Balgavý P Phys Chem Chem Phys; 2014 Sep; 16(34):18211-6. PubMed ID: 25055002 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of membrane models and their composition for islet amyloid polypeptide-membrane aggregation. Caillon L; Lequin O; Khemtémourian L Biochim Biophys Acta; 2013 Sep; 1828(9):2091-8. PubMed ID: 23707907 [TBL] [Abstract][Full Text] [Related]
20. Markers of experimental acute inflammation in the Wistar Han rat with particular reference to haptoglobin and C-reactive protein. Giffen PS; Turton J; Andrews CM; Barrett P; Clarke CJ; Fung KW; Munday MR; Roman IF; Smyth R; Walshe K; York MJ Arch Toxicol; 2003 Jul; 77(7):392-402. PubMed ID: 12669191 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]