These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 30551523)

  • 1. A non-invasive, multi-target approach to treat diabetic retinopathy.
    Julius A; Hopper W
    Biomed Pharmacother; 2019 Jan; 109():708-715. PubMed ID: 30551523
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aldose reductase / polyol inhibitors for diabetic retinopathy.
    Obrosova IG; Kador PF
    Curr Pharm Biotechnol; 2011 Mar; 12(3):373-85. PubMed ID: 20939801
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Updates on Aldose Reductase Inhibitors for Management of Diabetic Complications and Non-diabetic Diseases.
    Grewal AS; Bhardwaj S; Pandita D; Lather V; Sekhon BS
    Mini Rev Med Chem; 2016; 16(2):120-62. PubMed ID: 26349493
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of Aldose Reductase by Novel Phytocompounds: A Heuristic Approach to Treating Diabetic Retinopathy.
    Julius A; Renuka RR; Hopper W; Babu Raghu P; Rajendran S; Srinivasan S; Dharmalingam K; Alanazi AM; Arokiyaraj S; Prasath S
    Evid Based Complement Alternat Med; 2022; 2022():9624118. PubMed ID: 35356240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent studies of aldose reductase enzyme inhibition for diabetic complications.
    Suzen S; Buyukbingol E
    Curr Med Chem; 2003 Aug; 10(15):1329-52. PubMed ID: 12871133
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of 2-benzoxazolinone derivatives as lead against molecular targets of diabetic complications.
    Vyas B; Choudhary S; Singh PK; Singh B; Bahadur R; Malik AK; Silakari O
    Chem Biol Drug Des; 2018 Dec; 92(6):1981-1987. PubMed ID: 30030901
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Addressing selectivity issues of aldose reductase 2 inhibitors for the management of diabetic complications.
    Kumar M; Choudhary S; Singh PK; Silakari O
    Future Med Chem; 2020 Jul; 12(14):1327-1358. PubMed ID: 32602375
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New pharmacologic approaches to treating diabetic retinopathy.
    Ryan GJ
    Am J Health Syst Pharm; 2007 Sep; 64(17 Suppl 12):S15-21. PubMed ID: 17720889
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aldose reductase, ocular diabetic complications and the development of topical Kinostat(®).
    Kador PF; Wyman M; Oates PJ
    Prog Retin Eye Res; 2016 Sep; 54():1-29. PubMed ID: 27102270
    [TBL] [Abstract][Full Text] [Related]  

  • 10. N-(Aroyl)-N-(arylmethyloxy)-α-alanines: Selective inhibitors of aldose reductase.
    Nencetti S; La Motta C; Rossello A; Sartini S; Nuti E; Ciccone L; Orlandini E
    Bioorg Med Chem; 2017 Jun; 25(12):3068-3076. PubMed ID: 28392277
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of Novel Indole-Based Bifunctional Aldose Reductase Inhibitors/Antioxidants as Promising Drugs for the Treatment of Diabetic Complications.
    Kovacikova L; Prnova MS; Majekova M; Bohac A; Karasu C; Stefek M
    Molecules; 2021 May; 26(10):. PubMed ID: 34066081
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A selective aldose reductase inhibitor of a new structural class prevents or reverses early retinal abnormalities in experimental diabetic retinopathy.
    Sun W; Oates PJ; Coutcher JB; Gerhardinger C; Lorenzi M
    Diabetes; 2006 Oct; 55(10):2757-62. PubMed ID: 17003340
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aldose reductase inhibitors: 2013-present.
    Quattrini L; La Motta C
    Expert Opin Ther Pat; 2019 Mar; 29(3):199-213. PubMed ID: 30760060
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potential utility of statins, 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors in diabetic retinopathy.
    Yamagishi S; Nakamura K; Matsui T; Sato T; Takeuchi M
    Med Hypotheses; 2006; 66(5):1019-21. PubMed ID: 16188392
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Erythrocyte aldose reductase activity and sorbitol levels in diabetic retinopathy.
    Reddy GB; Satyanarayana A; Balakrishna N; Ayyagari R; Padma M; Viswanath K; Petrash JM
    Mol Vis; 2008 Mar; 14():593-601. PubMed ID: 18385795
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potential use of aldose reductase inhibitors to prevent diabetic complications.
    Zenon GJ; Abobo CV; Carter BL; Ball DW
    Clin Pharm; 1990 Jun; 9(6):446-57. PubMed ID: 2114249
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aldose reductase in diabetic microvascular complications.
    Chung SS; Chung SK
    Curr Drug Targets; 2005 Jun; 6(4):475-86. PubMed ID: 16026266
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural features of the aldose reductase and aldehyde reductase inhibitor-binding sites.
    El-Kabbani O; Wilson DK; Petrash M; Quiocho FA
    Mol Vis; 1998 Sep; 4():19. PubMed ID: 9756955
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The polyol pathway as a mechanism for diabetic retinopathy: attractive, elusive, and resilient.
    Lorenzi M
    Exp Diabetes Res; 2007; 2007():61038. PubMed ID: 18224243
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Epalrestat. A review of its pharmacology, and therapeutic potential in late-onset complications of diabetes mellitus.
    Steele JW; Faulds D; Goa KL
    Drugs Aging; 1993; 3(6):532-55. PubMed ID: 8312678
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.