These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 30551636)

  • 1. Comparing RGB-D Sensors for Close Range Outdoor Agricultural Phenotyping.
    Vit A; Shani G
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30551636
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessing the Performance of RGB-D Sensors for 3D Fruit Crop Canopy Characterization under Different Operating and Lighting Conditions.
    Gené-Mola J; Llorens J; Rosell-Polo JR; Gregorio E; Arnó J; Solanelles F; Martínez-Casasnovas JA; Escolà A
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33321817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low-Cost Three-Dimensional Modeling of Crop Plants.
    Martinez-Guanter J; Ribeiro Á; Peteinatos GG; Pérez-Ruiz M; Gerhards R; Bengochea-Guevara JM; Machleb J; Andújar D
    Sensors (Basel); 2019 Jun; 19(13):. PubMed ID: 31261757
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Breeding to adapt agriculture to climate change: affordable phenotyping solutions.
    Araus JL; Kefauver SC
    Curr Opin Plant Biol; 2018 Oct; 45(Pt B):237-247. PubMed ID: 29853283
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Light Drones for Basic In-Field Phenotyping and Precision Farming Applications: RGB Tools Based on Image Analysis.
    Pallottino F; Figorilli S; Cecchini C; Costa C
    Methods Mol Biol; 2021; 2264():269-278. PubMed ID: 33263916
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design Considerations for In-Field Measurement of Plant Architecture Traits Using Ground-Based Platforms.
    Pandey P; Young S
    Methods Mol Biol; 2022; 2539():171-190. PubMed ID: 35895204
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a Quick-Install Rapid Phenotyping System.
    Buelvas RM; Adamchuk VI; Lan J; Hoyos-Villegas V; Whitmore A; Stromvik MV
    Sensors (Basel); 2023 Apr; 23(9):. PubMed ID: 37177457
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Low-Cost Approach to Automatically Obtain Accurate 3D Models of Woody Crops.
    Bengochea-Guevara JM; Andújar D; Sanchez-Sardana FL; Cantuña K; Ribeiro A
    Sensors (Basel); 2017 Dec; 18(1):. PubMed ID: 29295536
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Image-Based High-Throughput Phenotyping in Horticultural Crops.
    Abebe AM; Kim Y; Kim J; Kim SL; Baek J
    Plants (Basel); 2023 May; 12(10):. PubMed ID: 37653978
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Field phenotyping for African crops: overview and perspectives.
    Cudjoe DK; Virlet N; Castle M; Riche AB; Mhada M; Waine TW; Mohareb F; Hawkesford MJ
    Front Plant Sci; 2023; 14():1219673. PubMed ID: 37860243
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advances in optical phenotyping of cereal crops.
    Sun D; Robbins K; Morales N; Shu Q; Cen H
    Trends Plant Sci; 2022 Feb; 27(2):191-208. PubMed ID: 34417079
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GiNA, an Efficient and High-Throughput Software for Horticultural Phenotyping.
    Diaz-Garcia L; Covarrubias-Pazaran G; Schlautman B; Zalapa J
    PLoS One; 2016; 11(8):e0160439. PubMed ID: 27529547
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimating Pavement Roughness by Fusing Color and Depth Data Obtained from an Inexpensive RGB-D Sensor.
    Mahmoudzadeh A; Golroo A; Jahanshahi MR; Firoozi Yeganeh S
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30959936
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phenotyping in the fields: dissecting the genetics of quantitative traits and digital farming.
    Großkinsky DK; Pieruschka R; Svensgaard J; Rascher U; Christensen S; Schurr U; Roitsch T
    New Phytol; 2015 Sep; 207(4):950-2. PubMed ID: 26235487
    [No Abstract]   [Full Text] [Related]  

  • 15. Resources for image-based high-throughput phenotyping in crops and data sharing challenges.
    Danilevicz MF; Bayer PE; Nestor BJ; Bennamoun M; Edwards D
    Plant Physiol; 2021 Oct; 187(2):699-715. PubMed ID: 34608963
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensor-based phenotyping of above-ground plant-pathogen interactions.
    Tanner F; Tonn S; de Wit J; Van den Ackerveken G; Berger B; Plett D
    Plant Methods; 2022 Mar; 18(1):35. PubMed ID: 35313920
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent developments and potential of robotics in plant eco-phenotyping.
    Yao L; van de Zedde R; Kowalchuk G
    Emerg Top Life Sci; 2021 May; 5(2):289-300. PubMed ID: 34013965
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crop 3D-a LiDAR based platform for 3D high-throughput crop phenotyping.
    Guo Q; Wu F; Pang S; Zhao X; Chen L; Liu J; Xue B; Xu G; Li L; Jing H; Chu C
    Sci China Life Sci; 2018 Mar; 61(3):328-339. PubMed ID: 28616808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Presence and future of plant phenotyping approaches in biostimulant research and development.
    De Diego N; Spíchal L
    J Exp Bot; 2022 Sep; 73(15):5199-5212. PubMed ID: 35770872
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Opportunity and challenges of phenotyping plant salt tolerance.
    Hu Y; Schmidhalter U
    Trends Plant Sci; 2023 May; 28(5):552-566. PubMed ID: 36628656
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.