These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 30551682)

  • 1. Treatment of Wastewater Using Seaweed: A Review.
    Arumugam N; Chelliapan S; Kamyab H; Thirugnana S; Othman N; Nasri NS
    Int J Environ Res Public Health; 2018 Dec; 15(12):. PubMed ID: 30551682
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Utilization of Algae and Seaweed Biomass for Bioremediation of Heavy Metal-Contaminated Wastewater.
    Znad H; Awual MR; Martini S
    Molecules; 2022 Feb; 27(4):. PubMed ID: 35209061
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Brown marine macroalgae as natural cation exchangers for toxic metal removal from industrial wastewaters: A review.
    Mazur LP; Cechinel MAP; de Souza SMAGU; Boaventura RAR; Vilar VJP
    J Environ Manage; 2018 Oct; 223():215-253. PubMed ID: 29933140
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of low-cost adsorbents for dye removal--a review.
    Gupta VK; Suhas
    J Environ Manage; 2009 Jun; 90(8):2313-42. PubMed ID: 19264388
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of two low-cost adsorption media for removal of toxic metals from contaminated water.
    Somerville R; Norrström AC
    Water Sci Technol; 2009; 60(4):935-42. PubMed ID: 19700832
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removal of heavy metals from aqueous solution by nonliving Ulva seaweed as biosorbent.
    Suzuki Y; Kametani T; Maruyama T
    Water Res; 2005 May; 39(9):1803-8. PubMed ID: 15899278
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potential use of algae for heavy metal bioremediation, a critical review.
    Zeraatkar AK; Ahmadzadeh H; Talebi AF; Moheimani NR; McHenry MP
    J Environ Manage; 2016 Oct; 181():817-831. PubMed ID: 27397844
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biosorption of heavy metal ions from aqueous solution by red macroalgae.
    Ibrahim WM
    J Hazard Mater; 2011 Sep; 192(3):1827-35. PubMed ID: 21798665
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal of organotin compounds, Cu and Zn from shipyard wastewaters by adsorption--flocculation: a technical and economical analysis.
    Vreysen S; Maes A; Wullaert H
    Mar Pollut Bull; 2008 Jan; 56(1):106-15. PubMed ID: 18036546
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low cost adsorbents for the removal of organic pollutants from wastewater.
    Ali I; Asim M; Khan TA
    J Environ Manage; 2012 Dec; 113():170-83. PubMed ID: 23023039
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Industrial wastes as low-cost potential adsorbents for the treatment of wastewater laden with heavy metals.
    Ahmaruzzaman M
    Adv Colloid Interface Sci; 2011 Aug; 166(1-2):36-59. PubMed ID: 21669401
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of soda ash industry effluent on protein content of two green seaweeds.
    Jadeja RN; Tewari A
    J Hazard Mater; 2008 Mar; 151(2-3):559-61. PubMed ID: 17662523
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biosorption of metal ions from aqueous solution and electroplating industry wastewater by Aspergillus japonicus: phytotoxicity studies.
    Binupriya AR; Sathishkumar M; Swaminathan K; Jeong ES; Yun SE; Pattabi S
    Bull Environ Contam Toxicol; 2006 Aug; 77(2):219-27. PubMed ID: 16977523
    [No Abstract]   [Full Text] [Related]  

  • 14. Recent advances in anaerobic biological processes for textile printing and dyeing wastewater treatment: a mini-review.
    Xu H; Yang B; Liu Y; Li F; Shen C; Ma C; Tian Q; Song X; Sand W
    World J Microbiol Biotechnol; 2018 Oct; 34(11):165. PubMed ID: 30374618
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comprehensive review on sources, analysis and toxicity of environmental pollutants and its removal methods from water environment.
    Saravanan A; Kumar PS; Hemavathy RV; Jeevanantham S; Harikumar P; Priyanka G; Devakirubai DRA
    Sci Total Environ; 2022 Mar; 812():152456. PubMed ID: 34952073
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of physico-chemical treatment on the subsequent biological process treating paper industry wastewater.
    el Khames Saad M; Moussaoui Y; Zaghbani A; Mosrati I; Elaloui E; Ben Salem R
    Water Sci Technol; 2012; 66(1):217-23. PubMed ID: 22678221
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New trends in removing heavy metals from wastewater.
    Zhao M; Xu Y; Zhang C; Rong H; Zeng G
    Appl Microbiol Biotechnol; 2016 Aug; 100(15):6509-6518. PubMed ID: 27318819
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A censorious review on the role of natural lignocellulosic fiber waste as a low-cost adsorbent for removal of diverse textile industrial pollutants.
    Babu RS; Prasanna K; Kumar PS
    Environ Res; 2022 Dec; 215(Pt 1):114183. PubMed ID: 36063910
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fungal biosorption--an alternative to meet the challenges of heavy metal pollution in aqueous solutions.
    Dhankhar R; Hooda A
    Environ Technol; 2011 Apr; 32(5-6):467-91. PubMed ID: 21877528
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Significance of exploiting non-living biomaterials for the biosorption of wastewater pollutants.
    Rangabhashiyam S; Suganya E; Selvaraju N; Varghese LA
    World J Microbiol Biotechnol; 2014 Jun; 30(6):1669-89. PubMed ID: 24436063
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.