These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 30551919)

  • 1. Muscle material properties in passive and active stroke-impaired muscle.
    Lee SSM; Jakubowski KL; Spear SC; Rymer WZ
    J Biomech; 2019 Jan; 83():197-204. PubMed ID: 30551919
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantifying changes in material properties of stroke-impaired muscle.
    Lee SS; Spear S; Rymer WZ
    Clin Biomech (Bristol, Avon); 2015 Mar; 30(3):269-75. PubMed ID: 25638688
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Passive material properties of stroke-impaired plantarflexor and dorsiflexor muscles.
    Jakubowski KL; Terman A; Santana RVC; Lee SSM
    Clin Biomech (Bristol, Avon); 2017 Nov; 49():48-55. PubMed ID: 28866442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Frequency Dependence of Shear Wave Velocity in Stroke-Affected Muscles During Isometric Contraction- Preliminary Data
    Saadat F; Son J; Rymer WZ; Lee SSM
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2292-2295. PubMed ID: 30440864
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Loss of variable fascicle gearing during voluntary isometric contractions of paretic medial gastrocnemius muscles in male chronic stroke survivors.
    Son J; Rymer WZ
    J Physiol; 2020 Nov; 598(22):5183-5194. PubMed ID: 32818308
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Longer electromechanical delay in paretic triceps surae muscles during voluntary isometric plantarflexion torque generation in chronic hemispheric stroke survivors.
    Son J; Rymer WZ
    J Electromyogr Kinesiol; 2021 Feb; 56():102475. PubMed ID: 33242750
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo relationship between joint stiffness, joint-based estimates of muscle stiffness, and shear-wave velocity.
    Vigotsky AD; Rouse EJ; Lee SSM
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1468-1471. PubMed ID: 30440670
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural and passive mechanical properties of the medial gastrocnemius muscle in ambulatory individuals with chronic stroke.
    Huang M; Miller T; Fu SN; Ying MTC; Pang MYC
    Clin Biomech (Bristol, Avon); 2022 Jun; 96():105672. PubMed ID: 35617816
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of Post-Stroke Spastic Muscle Stiffness Using Shear Wave Ultrasound Elastography.
    Wu CH; Ho YC; Hsiao MY; Chen WS; Wang TG
    Ultrasound Med Biol; 2017 Jun; 43(6):1105-1111. PubMed ID: 28285729
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alterations of Elastic Property of Spastic Muscle With Its Joint Resistance Evaluated From Shear Wave Elastography and Biomechanical Model.
    Leng Y; Wang Z; Bian R; Lo WLA; Xie X; Wang R; Huang D; Li L
    Front Neurol; 2019; 10():736. PubMed ID: 31354610
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Limited fascicle shortening and fascicle rotation may be associated with impaired voluntary force-generating capacity in pennate muscles of chronic stroke survivors.
    Son J; Rymer WZ; Lee SSM
    Clin Biomech (Bristol, Avon); 2020 May; 75():105007. PubMed ID: 32339945
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrasound elastography in the assessment of post-stroke muscle stiffness: a systematic review.
    Roots J; Trajano GS; Fontanarosa D
    Insights Imaging; 2022 Apr; 13(1):67. PubMed ID: 35380302
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shear Waves Reveal Viscoelastic Changes in Skeletal Muscles After Hemispheric Stroke.
    Rasool G; Wang AB; Rymer WZ; Lee SSM
    IEEE Trans Neural Syst Rehabil Eng; 2018 Oct; 26(10):2006-2014. PubMed ID: 30334740
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial distribution of stiffness between and within muscles in paretic and healthy individuals during prone and standing positions.
    Belghith K; Zidi M; Fedele JM; Bou Serhal R; Maktouf W
    J Biomech; 2023 Dec; 161():111838. PubMed ID: 37922613
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acute passive vibration reduces arterial stiffness and aortic wave reflection in stroke survivors.
    Koutnik AP; Wong A; Kalfon R; Madzima TA; Figueroa A
    Eur J Appl Physiol; 2014 Jan; 114(1):105-11. PubMed ID: 24150784
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shear wave ultrasound elastography of the biceps brachii can be used as a precise proxy for passive elbow torque in individuals with hemiparetic stroke.
    Ellis MD; Gurari N; Gerritsen NTA; Lee SM; Wang A; Dewald JPA
    Physiol Rep; 2023 May; 11(10):e15691. PubMed ID: 37208978
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Motor unit number reductions in paretic muscles of stroke survivors.
    Li X; Wang YC; Suresh NL; Rymer WZ; Zhou P
    IEEE Trans Inf Technol Biomed; 2011 Jul; 15(4):505-12. PubMed ID: 21478079
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Altered motor unit discharge patterns in paretic muscles of stroke survivors assessed using surface electromyography.
    Hu X; Suresh AK; Rymer WZ; Suresh NL
    J Neural Eng; 2016 Aug; 13(4):046025. PubMed ID: 27432656
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantifying Plantar Flexor Muscles Stiffness During Passive and Active Force Generation Using Shear Wave Elastography in Individuals With Chronic Stroke.
    Belghith K; Zidi M; Fedele JM; Bou-Serhal R; Maktouf W
    Ultrasound Med Biol; 2024 May; 50(5):735-742. PubMed ID: 38378402
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterizing differential poststroke corticomotor drive to the dorsi- and plantarflexor muscles during resting and volitional muscle activation.
    Palmer JA; Zarzycki R; Morton SM; Kesar TM; Binder-Macleod SA
    J Neurophysiol; 2017 Apr; 117(4):1615-1624. PubMed ID: 28077661
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.