BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

368 related articles for article (PubMed ID: 30552183)

  • 1.
    Varela C; Bartel C; Roach M; Borneman A; Curtin C
    Appl Environ Microbiol; 2019 Feb; 85(4):. PubMed ID: 30552183
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptive evolution of sulfite tolerance in Brettanomyces bruxellensis.
    Bartel C; Roach M; Onetto C; Curtin C; Varela C; Borneman A
    FEMS Yeast Res; 2021 Jun; 21(5):. PubMed ID: 34089329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptomics unravels the adaptive molecular mechanisms of Brettanomyces bruxellensis under SO
    Valdetara F; Škalič M; Fracassetti D; Louw M; Compagno C; du Toit M; Foschino R; Petrovič U; Divol B; Vigentini I
    Food Microbiol; 2020 Sep; 90():103483. PubMed ID: 32336374
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancing expression of SSU1 genes in Saccharomyces uvarum leads to an increase in sulfite tolerance and a transcriptome profile change.
    Liu XZ; Sang M; Zhang XA; Zhang TK; Zhang HY; He X; Li SX; Sun XD; Zhang ZM
    FEMS Yeast Res; 2017 May; 17(3):. PubMed ID: 28449102
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Competition experiments between Brettanomyces bruxellensis strains reveal specific adaptation to sulfur dioxide and complex interactions at intraspecies level.
    Avramova M; Grbin P; Borneman A; Albertin W; Masneuf-Pomarède I; Varela C
    FEMS Yeast Res; 2019 May; 19(3):. PubMed ID: 30721945
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Viable But Not Culturable (VBNC) state of Brettanomyces bruxellensis in wine: New insights on molecular basis of VBNC behaviour using a transcriptomic approach.
    Capozzi V; Di Toro MR; Grieco F; Michelotti V; Salma M; Lamontanara A; Russo P; Orrù L; Alexandre H; Spano G
    Food Microbiol; 2016 Oct; 59():196-204. PubMed ID: 27375260
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biocontrol of Brettanomyces/Dekkera bruxellensis in alcoholic fermentations using saccharomycin-overproducing Saccharomyces cerevisiae strains.
    Branco P; Sabir F; Diniz M; Carvalho L; Albergaria H; Prista C
    Appl Microbiol Biotechnol; 2019 Apr; 103(7):3073-3083. PubMed ID: 30734124
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of novel killer toxins secreted by wine-related non-Saccharomyces yeasts and their action on Brettanomyces spp.
    Mehlomakulu NN; Setati ME; Divol B
    Int J Food Microbiol; 2014 Oct; 188():83-91. PubMed ID: 25087208
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ustilago maydis killer toxin as a new tool for the biocontrol of the wine spoilage yeast Brettanomyces bruxellensis.
    Santos A; Navascués E; Bravo E; Marquina D
    Int J Food Microbiol; 2011 Jan; 145(1):147-54. PubMed ID: 21195497
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficiency of population-dependent sulfite against Brettanomyces bruxellensis in red wine.
    Longin C; Degueurce C; Julliat F; Guilloux-Benatier M; Rousseaux S; Alexandre H
    Food Res Int; 2016 Nov; 89(Pt 1):620-630. PubMed ID: 28460958
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Starter cultures as biocontrol strategy to prevent Brettanomyces bruxellensis proliferation in wine.
    Berbegal C; Spano G; Fragasso M; Grieco F; Russo P; Capozzi V
    Appl Microbiol Biotechnol; 2018 Jan; 102(2):569-576. PubMed ID: 29189899
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new chromosomal rearrangement improves the adaptation of wine yeasts to sulfite.
    García-Ríos E; Nuévalos M; Barrio E; Puig S; Guillamón JM
    Environ Microbiol; 2019 May; 21(5):1771-1781. PubMed ID: 30859719
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The impact of CUP1 gene copy-number and XVI-VIII/XV-XVI translocations on copper and sulfite tolerance in vineyard Saccharomyces cerevisiae strain populations.
    Crosato G; Nadai C; Carlot M; Garavaglia J; Ziegler DR; Rossi RC; De Castilhos J; Campanaro S; Treu L; Giacomini A; Corich V
    FEMS Yeast Res; 2020 Jun; 20(4):. PubMed ID: 32436567
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular Diagnosis of
    Avramova M; Vallet-Courbin A; Maupeu J; Masneuf-Pomarède I; Albertin W
    Front Microbiol; 2018; 9():1260. PubMed ID: 29942296
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genotype-dependent sulphite tolerance of Australian Dekkera (Brettanomyces) bruxellensis wine isolates.
    Curtin C; Kennedy E; Henschke PA
    Lett Appl Microbiol; 2012 Jul; 55(1):56-61. PubMed ID: 22537453
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel antimicrobial peptides produced by Candida intermedia LAMAP1790 active against the wine-spoilage yeast Brettanomyces bruxellensis.
    Peña R; Ganga MA
    Antonie Van Leeuwenhoek; 2019 Feb; 112(2):297-304. PubMed ID: 30187229
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactions between Brettanomyces bruxellensis and other yeast species during the initial stages of winemaking.
    Renouf V; Falcou M; Miot-Sertier C; Perello MC; De Revel G; Lonvaud-Funel A
    J Appl Microbiol; 2006 Jun; 100(6):1208-19. PubMed ID: 16696668
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeted gene deletion in Brettanomyces bruxellensis with an expression-free CRISPR-Cas9 system.
    Varela C; Bartel C; Onetto C; Borneman A
    Appl Microbiol Biotechnol; 2020 Aug; 104(16):7105-7115. PubMed ID: 32592028
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sulfur dioxide response of Brettanomyces bruxellensis strains isolated from Greek wine.
    Dimopoulou M; Hatzikamari M; Masneuf-Pomarede I; Albertin W
    Food Microbiol; 2019 Apr; 78():155-163. PubMed ID: 30497597
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptation of yeasts Saccharomyces cerevisiae and Brettanomyces bruxellensis to winemaking conditions: a comparative study of stress genes expression.
    Nardi T; Remize F; Alexandre H
    Appl Microbiol Biotechnol; 2010 Oct; 88(4):925-37. PubMed ID: 20730535
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.