These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 30552316)

  • 21. Variational Monte Carlo Calculations of A≤4 Nuclei with an Artificial Neural-Network Correlator Ansatz.
    Adams C; Carleo G; Lovato A; Rocco N
    Phys Rev Lett; 2021 Jul; 127(2):022502. PubMed ID: 34296893
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Information Perspective to Probabilistic Modeling: Boltzmann Machines versus Born Machines.
    Cheng S; Chen J; Wang L
    Entropy (Basel); 2018 Aug; 20(8):. PubMed ID: 33265672
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Symmetries and Many-Body Excitations with Neural-Network Quantum States.
    Choo K; Carleo G; Regnault N; Neupert T
    Phys Rev Lett; 2018 Oct; 121(16):167204. PubMed ID: 30387658
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantum decoherence and quasi-equilibrium in open quantum systems with few degrees of freedom: application to 1H NMR of nematic liquid crystals.
    Segnorile HH; Zamar RC
    J Chem Phys; 2011 Dec; 135(24):244509. PubMed ID: 22225171
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quantum Entanglement from Classical Trajectories.
    Runeson JE; Richardson JO
    Phys Rev Lett; 2021 Dec; 127(25):250403. PubMed ID: 35029436
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantum Loop Topography for Machine Learning.
    Zhang Y; Kim EA
    Phys Rev Lett; 2017 May; 118(21):216401. PubMed ID: 28598670
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The deep arbitrary polynomial chaos neural network or how Deep Artificial Neural Networks could benefit from data-driven homogeneous chaos theory.
    Oladyshkin S; Praditia T; Kroeker I; Mohammadi F; Nowak W; Otte S
    Neural Netw; 2023 Sep; 166():85-104. PubMed ID: 37480771
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantum simulation of classical thermal states.
    Dür W; Van den Nest M
    Phys Rev Lett; 2011 Oct; 107(17):170402. PubMed ID: 22107489
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Correlator convolutional neural networks as an interpretable architecture for image-like quantum matter data.
    Miles C; Bohrdt A; Wu R; Chiu C; Xu M; Ji G; Greiner M; Weinberger KQ; Demler E; Kim EA
    Nat Commun; 2021 Jun; 12(1):3905. PubMed ID: 34162847
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A reductionist perspective on quantum statistical mechanics: Coarse-graining of path integrals.
    Sinitskiy AV; Voth GA
    J Chem Phys; 2015 Sep; 143(9):094104. PubMed ID: 26342356
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Deriving the exact nonadiabatic quantum propagator in the mapping variable representation.
    Hele TJ; Ananth N
    Faraday Discuss; 2016 Dec; 195():269-289. PubMed ID: 27752681
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Path-integral isomorphic Hamiltonian for including nuclear quantum effects in non-adiabatic dynamics.
    Tao X; Shushkov P; Miller TF
    J Chem Phys; 2018 Mar; 148(10):102327. PubMed ID: 29544332
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Quantum neuronal sensing of quantum many-body states on a 61-qubit programmable superconducting processor.
    Gong M; Huang HL; Wang S; Guo C; Li S; Wu Y; Zhu Q; Zhao Y; Guo S; Qian H; Ye Y; Zha C; Chen F; Ying C; Yu J; Fan D; Wu D; Su H; Deng H; Rong H; Zhang K; Cao S; Lin J; Xu Y; Sun L; Guo C; Li N; Liang F; Sakurai A; Nemoto K; Munro WJ; Huo YH; Lu CY; Peng CZ; Zhu X; Pan JW
    Sci Bull (Beijing); 2023 May; 68(9):906-912. PubMed ID: 37085397
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A quantum many-body spin system in an optical lattice clock.
    Martin MJ; Bishof M; Swallows MD; Zhang X; Benko C; von-Stecher J; Gorshkov AV; Rey AM; Ye J
    Science; 2013 Aug; 341(6146):632-6. PubMed ID: 23929976
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Artificial Neural Networks Applied as Molecular Wave Function Solvers.
    Yang PJ; Sugiyama M; Tsuda K; Yanai T
    J Chem Theory Comput; 2020 Jun; 16(6):3513-3529. PubMed ID: 32320233
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The hierarchy of Davydov's Ansätze: From guesswork to numerically "exact" many-body wave functions.
    Zhao Y
    J Chem Phys; 2023 Feb; 158(8):080901. PubMed ID: 36859105
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hierarchical Clifford Transformations to Reduce Entanglement in Quantum Chemistry Wave Functions.
    Mishmash RV; Gujarati TP; Motta M; Zhai H; Chan GK; Mezzacapo A
    J Chem Theory Comput; 2023 Jun; 19(11):3194-3208. PubMed ID: 37227024
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dynamic Topology Reconfiguration of Boltzmann Machines on Quantum Annealers.
    Liu J; Yao KT; Spedalieri F
    Entropy (Basel); 2020 Oct; 22(11):. PubMed ID: 33286970
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Discovering Quantum Phase Transitions with Fermionic Neural Networks.
    Cassella G; Sutterud H; Azadi S; Drummond ND; Pfau D; Spencer JS; Foulkes WMC
    Phys Rev Lett; 2023 Jan; 130(3):036401. PubMed ID: 36763402
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Discovery of a general method of solving the Schrödinger and dirac equations that opens a way to accurately predictive quantum chemistry.
    Nakatsuji H
    Acc Chem Res; 2012 Sep; 45(9):1480-90. PubMed ID: 22686372
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.