These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 30552327)

  • 21. Necessary conditions for STDP-based pattern recognition learning in a memristive spiking neural network.
    Demin VA; Nekhaev DV; Surazhevsky IA; Nikiruy KE; Emelyanov AV; Nikolaev SN; Rylkov VV; Kovalchuk MV
    Neural Netw; 2021 Feb; 134():64-75. PubMed ID: 33291017
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spike-Timing Dependent Plasticity in Unipolar Silicon Oxide RRAM Devices.
    Zarudnyi K; Mehonic A; Montesi L; Buckwell M; Hudziak S; Kenyon AJ
    Front Neurosci; 2018; 12():57. PubMed ID: 29472837
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A reconfigurable on-line learning spiking neuromorphic processor comprising 256 neurons and 128K synapses.
    Qiao N; Mostafa H; Corradi F; Osswald M; Stefanini F; Sumislawska D; Indiveri G
    Front Neurosci; 2015; 9():141. PubMed ID: 25972778
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spiking neurons with spatiotemporal dynamics and gain modulation for monolithically integrated memristive neural networks.
    Duan Q; Jing Z; Zou X; Wang Y; Yang K; Zhang T; Wu S; Huang R; Yang Y
    Nat Commun; 2020 Jul; 11(1):3399. PubMed ID: 32636385
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Computing of temporal information in spiking neural networks with ReRAM synapses.
    Wang W; Pedretti G; Milo V; Carboni R; Calderoni A; Ramaswamy N; Spinelli AS; Ielmini D
    Faraday Discuss; 2019 Feb; 213(0):453-469. PubMed ID: 30361729
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A 2-transistor/1-resistor artificial synapse capable of communication and stochastic learning in neuromorphic systems.
    Wang Z; Ambrogio S; Balatti S; Ielmini D
    Front Neurosci; 2014; 8():438. PubMed ID: 25642161
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Parylene Based Memristive Devices with Multilevel Resistive Switching for Neuromorphic Applications.
    Minnekhanov AA; Emelyanov AV; Lapkin DA; Nikiruy KE; Shvetsov BS; Nesmelov AA; Rylkov VV; Demin VA; Erokhin VV
    Sci Rep; 2019 Jul; 9(1):10800. PubMed ID: 31346245
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A neuromorphic implementation of multiple spike-timing synaptic plasticity rules for large-scale neural networks.
    Wang RM; Hamilton TJ; Tapson JC; van Schaik A
    Front Neurosci; 2015; 9():180. PubMed ID: 26041985
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A VLSI array of low-power spiking neurons and bistable synapses with spike-timing dependent plasticity.
    Indiveri G; Chicca E; Douglas R
    IEEE Trans Neural Netw; 2006 Jan; 17(1):211-21. PubMed ID: 16526488
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Single pairing spike-timing dependent plasticity in BiFeO3 memristors with a time window of 25 ms to 125 μs.
    Du N; Kiani M; Mayr CG; You T; Bürger D; Skorupa I; Schmidt OG; Schmidt H
    Front Neurosci; 2015; 9():227. PubMed ID: 26175666
    [TBL] [Abstract][Full Text] [Related]  

  • 31. On spike-timing-dependent-plasticity, memristive devices, and building a self-learning visual cortex.
    Zamarreño-Ramos C; Camuñas-Mesa LA; Pérez-Carrasco JA; Masquelier T; Serrano-Gotarredona T; Linares-Barranco B
    Front Neurosci; 2011; 5():26. PubMed ID: 21442012
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Implementation of Simple but Powerful Trilayer Oxide-Based Artificial Synapses with a Tailored Bio-Synapse-Like Structure.
    Zhang H; Ju X; Yew KS; Ang DS
    ACS Appl Mater Interfaces; 2020 Jan; 12(1):1036-1045. PubMed ID: 31815426
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Memristive neural network for on-line learning and tracking with brain-inspired spike timing dependent plasticity.
    Pedretti G; Milo V; Ambrogio S; Carboni R; Bianchi S; Calderoni A; Ramaswamy N; Spinelli AS; Ielmini D
    Sci Rep; 2017 Jul; 7(1):5288. PubMed ID: 28706303
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reinforcement learning through modulation of spike-timing-dependent synaptic plasticity.
    Florian RV
    Neural Comput; 2007 Jun; 19(6):1468-502. PubMed ID: 17444757
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Neuromorphic computing with multi-memristive synapses.
    Boybat I; Le Gallo M; Nandakumar SR; Moraitis T; Parnell T; Tuma T; Rajendran B; Leblebici Y; Sebastian A; Eleftheriou E
    Nat Commun; 2018 Jun; 9(1):2514. PubMed ID: 29955057
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Breaking Liebig's Law: An Advanced Multipurpose Neuromorphic Engine.
    Wang R; van Schaik A
    Front Neurosci; 2018; 12():593. PubMed ID: 30210278
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Memristive and CMOS Devices for Neuromorphic Computing.
    Milo V; Malavena G; Monzio Compagnoni C; Ielmini D
    Materials (Basel); 2020 Jan; 13(1):. PubMed ID: 31906325
    [TBL] [Abstract][Full Text] [Related]  

  • 38. R-STDP Spiking Neural Network Architecture for Motion Control on a Changing Friction Joint Robotic Arm.
    Juarez-Lora A; Ponce-Ponce VH; Sossa H; Rubio-Espino E
    Front Neurorobot; 2022; 16():904017. PubMed ID: 35663727
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A 0.086-mm
    Frenkel C; Lefebvre M; Legat JD; Bol D
    IEEE Trans Biomed Circuits Syst; 2019 Feb; 13(1):145-158. PubMed ID: 30418919
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A forecast-based STDP rule suitable for neuromorphic implementation.
    Davies S; Galluppi F; Rast AD; Furber SB
    Neural Netw; 2012 Aug; 32():3-14. PubMed ID: 22386500
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.