These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 30552327)

  • 41. Phase-change memtransistive synapses for mixed-plasticity neural computations.
    Sarwat SG; Kersting B; Moraitis T; Jonnalagadda VP; Sebastian A
    Nat Nanotechnol; 2022 May; 17(5):507-513. PubMed ID: 35347271
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Emerging neuromorphic devices.
    Ielmini D; Ambrogio S
    Nanotechnology; 2020 Feb; 31(9):092001. PubMed ID: 31698347
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Supervised Learning Using Spike-Timing-Dependent Plasticity of Memristive Synapses.
    Nishitani Y; Kaneko Y; Ueda M
    IEEE Trans Neural Netw Learn Syst; 2015 Dec; 26(12):2999-3008. PubMed ID: 26595417
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Artificial Neurons Based on Ag/V
    Wang Y; Chen X; Shen D; Zhang M; Chen X; Chen X; Shao W; Gu H; Xu J; Hu E; Wang L; Xu R; Tong Y
    Nanomaterials (Basel); 2021 Oct; 11(11):. PubMed ID: 34835625
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Toward Robust Cognitive 3D Brain-Inspired Cross-Paradigm System.
    Ben Abdallah A; Dang KN
    Front Neurosci; 2021; 15():690208. PubMed ID: 34248491
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A CMOS-memristor hybrid system for implementing stochastic binary spike timing-dependent plasticity.
    Ahmadi-Farsani J; Ricci S; Hashemkhani S; Ielmini D; Linares-Barranco B; Serrano-Gotarredona T
    Philos Trans A Math Phys Eng Sci; 2022 Jul; 380(2228):20210018. PubMed ID: 35658675
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Nanoscale memristor device as synapse in neuromorphic systems.
    Jo SH; Chang T; Ebong I; Bhadviya BB; Mazumder P; Lu W
    Nano Lett; 2010 Apr; 10(4):1297-301. PubMed ID: 20192230
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Engineering Spiking Neurons Using Threshold Switching Devices for High-Efficient Neuromorphic Computing.
    Ding Y; Zhang Y; Zhang X; Chen P; Zhang Z; Yang Y; Cheng L; Mu C; Wang M; Xiang D; Wu G; Zhou K; Yuan Z; Liu Q
    Front Neurosci; 2021; 15():786694. PubMed ID: 35069102
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Artificial Synapses with Short- and Long-Term Memory for Spiking Neural Networks Based on Renewable Materials.
    Park Y; Lee JS
    ACS Nano; 2017 Sep; 11(9):8962-8969. PubMed ID: 28837313
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Programmable Synaptic Metaplasticity and below Femtojoule Spiking Energy Realized in Graphene-Based Neuromorphic Memristor.
    Liu B; Liu Z; Chiu IS; Di M; Wu Y; Wang JC; Hou TH; Lai CS
    ACS Appl Mater Interfaces; 2018 Jun; 10(24):20237-20243. PubMed ID: 29873237
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Demonstrating Hybrid Learning in a Flexible Neuromorphic Hardware System.
    Friedmann S; Schemmel J; Grubl A; Hartel A; Hock M; Meier K
    IEEE Trans Biomed Circuits Syst; 2017 Feb; 11(1):128-142. PubMed ID: 28113678
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Memristive Hebbian plasticity model: device requirements for the emulation of Hebbian plasticity based on memristive devices.
    Ziegler M; Riggert C; Hansen M; Bartsch T; Kohlstedt H
    IEEE Trans Biomed Circuits Syst; 2015 Apr; 9(2):197-206. PubMed ID: 25879966
    [TBL] [Abstract][Full Text] [Related]  

  • 53. An event-based neural network architecture with an asynchronous programmable synaptic memory.
    Moradi S; Indiveri G
    IEEE Trans Biomed Circuits Syst; 2014 Feb; 8(1):98-107. PubMed ID: 24681923
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Zeolite-Based Memristive Synapse with Ultralow Sub-10-fJ Energy Consumption for Neuromorphic Computation.
    Zeng T; Zou X; Wang Z; Yu G; Yang Z; Rong H; Zhang C; Xu H; Lin Y; Zhao X; Ma J; Zhu G; Liu Y
    Small; 2021 Apr; 17(13):e2006662. PubMed ID: 33738968
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Optimal Localist and Distributed Coding of Spatiotemporal Spike Patterns Through STDP and Coincidence Detection.
    Masquelier T; Kheradpisheh SR
    Front Comput Neurosci; 2018; 12():74. PubMed ID: 30279653
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A neuromorphic VLSI design for spike timing and rate based synaptic plasticity.
    Rahimi Azghadi M; Al-Sarawi S; Abbott D; Iannella N
    Neural Netw; 2013 Sep; 45():70-82. PubMed ID: 23566339
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Pattern classification by memristive crossbar circuits using ex situ and in situ training.
    Alibart F; Zamanidoost E; Strukov DB
    Nat Commun; 2013; 4():2072. PubMed ID: 23797631
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Learning to Approximate Functions Using Nb-Doped SrTiO
    Tiotto TF; Goossens AS; Borst JP; Banerjee T; Taatgen NA
    Front Neurosci; 2020; 14():627276. PubMed ID: 33679290
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Partial Breakdown of Input Specificity of STDP at Individual Synapses Promotes New Learning.
    Volgushev M; Chen JY; Ilin V; Goz R; Chistiakova M; Bazhenov M
    J Neurosci; 2016 Aug; 36(34):8842-55. PubMed ID: 27559167
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Energy-Efficient Artificial Synapses Based on Oxide Tunnel Junctions.
    Li J; Ge C; Lu H; Guo H; Guo EJ; He M; Wang C; Yang G; Jin K
    ACS Appl Mater Interfaces; 2019 Nov; 11(46):43473-43479. PubMed ID: 31702891
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.