BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

827 related articles for article (PubMed ID: 30552495)

  • 1. A novel switchable fluorescent sensor for facile and highly sensitive detection of alkaline phosphatase activity in a water environment with gold/silver nanoclusters.
    Wang X; Liu Z; Zhao W; Sun J; Qian B; Wang X; Zeng H; Du D; Duan J
    Anal Bioanal Chem; 2019 Feb; 411(5):1009-1017. PubMed ID: 30552495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ratiometric fluorescent sensor for visual determination of copper ions and alkaline phosphatase based on carbon quantum dots and gold nanoclusters.
    Liu H; Jia L; Wang Y; Wang M; Gao Z; Ren X
    Anal Bioanal Chem; 2019 May; 411(12):2531-2543. PubMed ID: 30828757
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Switchable fluorescence of gold nanoclusters for probing the activity of alkaline phosphatase and its application in immunoassay.
    Hu XL; Wu XM; Fang X; Li ZJ; Wang GL
    Biosens Bioelectron; 2016 Mar; 77():666-72. PubMed ID: 26496220
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescence Detection of p-Nitrophenol in Water Using Bovine Serum Albumin Capped ag Nanoclusters.
    Mao M; Deng C; He Y; Ge Y; Song G
    J Fluoresc; 2017 Jul; 27(4):1421-1426. PubMed ID: 28401411
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensitive detection of alkaline phosphatase by switching on gold nanoclusters fluorescence quenched by pyridoxal phosphate.
    Halawa MI; Gao W; Saqib M; Kitte SA; Wu F; Xu G
    Biosens Bioelectron; 2017 Sep; 95():8-14. PubMed ID: 28399445
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A fluorescence "off-on-off" sensing platform based on bimetallic gold/silver nanoclusters for ascorbate oxidase activity monitoring.
    Wang M; Wang M; Wang G; Su X
    Analyst; 2020 Feb; 145(3):1001-1007. PubMed ID: 31830153
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid synthesis of Au/Ag bimetallic nanoclusters with highly biochemical stability and its applications for temperature and ratiometric pH sensing.
    Sun H; Qing T; He X; Shangguan J; Jia R; Bu H; Huang J; Wang K
    Anal Chim Acta; 2019 Sep; 1070():88-96. PubMed ID: 31103171
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A "turn-on" fluorescent sensor for ozone detection in ambient air using protein-directed gold nanoclusters.
    Wu D; Qi W; Liu C; Zhang Q
    Anal Bioanal Chem; 2017 Apr; 409(10):2539-2546. PubMed ID: 28124753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorescence turn-on sensing of L-cysteine based on FRET between Au-Ag nanoclusters and Au nanorods.
    Li JJ; Qiao D; Zhao J; Weng GJ; Zhu J; Zhao JW
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Jun; 217():247-255. PubMed ID: 30947133
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensitive detection of cyanide using bovine serum albumin-stabilized cerium/gold nanoclusters.
    Wang CW; Chen YN; Wu BY; Lee CK; Chen YC; Huang YH; Chang HT
    Anal Bioanal Chem; 2016 Jan; 408(1):287-94. PubMed ID: 26507328
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facile Synthesis of Enhanced Fluorescent Gold-Silver Bimetallic Nanocluster and Its Application for Highly Sensitive Detection of Inorganic Pyrophosphatase Activity.
    Zhou Q; Lin Y; Xu M; Gao Z; Yang H; Tang D
    Anal Chem; 2016 Sep; 88(17):8886-92. PubMed ID: 27476555
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of fluorescent DNA-templated gold/silver nanoclusters for the detection of sulfide ions.
    Chen WY; Lan GY; Chang HT
    Anal Chem; 2011 Dec; 83(24):9450-5. PubMed ID: 22029551
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescence red-shift of gold-silver nanoclusters upon interaction with cysteine and its application.
    Feng T; Chen Y; Feng B; Yan J; Di J
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Jan; 206():97-103. PubMed ID: 30086452
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorometric and colorimetric dual-readout alkaline phosphatase activity assay based on enzymatically induced formation of colored Au@Ag nanoparticles and an inner filter effect.
    Chen C; Zhang G; Ni P; Jiang Y; Lu Y; Lu Z
    Mikrochim Acta; 2019 May; 186(6):348. PubMed ID: 31079308
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microwave-assisted synthesis of BSA-protected small gold nanoclusters and their fluorescence-enhanced sensing of silver(I) ions.
    Yue Y; Liu TY; Li HW; Liu Z; Wu Y
    Nanoscale; 2012 Apr; 4(7):2251-4. PubMed ID: 22382936
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A ratiometric fluorescent probe for detection of uric acid based on the gold nanoclusters-quantum dots nanohybrid.
    Pang S
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Nov; 222():117233. PubMed ID: 31176998
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tuning of gold nanoclusters sensing applications with bovine serum albumin and bromelain for detection of Hg
    Bhamore JR; Jha S; Basu H; Singhal RK; Murthy ZVP; Kailasa SK
    Anal Bioanal Chem; 2018 Apr; 410(11):2781-2791. PubMed ID: 29480389
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid and simple detection of ascorbic acid and alkaline phosphatase via controlled generation of silver nanoparticles and selective recognition.
    Chen P; Yan S; Sawyer E; Ying B; Wei X; Wu Z; Geng J
    Analyst; 2019 Feb; 144(4):1147-1152. PubMed ID: 30534723
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly selective fluorescent sensors for Hg(2+) based on bovine serum albumin-capped gold nanoclusters.
    Hu D; Sheng Z; Gong P; Zhang P; Cai L
    Analyst; 2010 Jun; 135(6):1411-6. PubMed ID: 20419194
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of residual rifampicin in urine via fluorescence quenching of gold nanoclusters on paper.
    Chatterjee K; Kuo CW; Chen A; Chen P
    J Nanobiotechnology; 2015 Jun; 13():46. PubMed ID: 26113082
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 42.