These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 30552543)

  • 1. Dynamics and energy dissipation of a rigid dipole driven by the RF-field in a viscous fluid: Deterministic approach.
    Lyutyy TV
    Eur Phys J E Soft Matter; 2018 Dec; 41(12):142. PubMed ID: 30552543
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy dissipation of rigid dipoles in a viscous fluid under the action of a time-periodic field: The influence of thermal bath and dipole interaction.
    Lyutyy TV; Reva VV
    Phys Rev E; 2018 May; 97(5-1):052611. PubMed ID: 29906895
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnetic particle hyperthermia: power losses under circularly polarized field in anisotropic nanoparticles.
    Nándori I; Rácz J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 1):061404. PubMed ID: 23367947
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia.
    Fortin JP; Wilhelm C; Servais J; Ménager C; Bacri JC; Gazeau F
    J Am Chem Soc; 2007 Mar; 129(9):2628-35. PubMed ID: 17266310
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magnetic particle hyperthermia: Néel relaxation in magnetic nanoparticles under circularly polarized field.
    de Châtel PF; Nándori I; Hakl J; Mészáros S; Vad K
    J Phys Condens Matter; 2009 Mar; 21(12):124202. PubMed ID: 21817444
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rotational properties of ferromagnetic nanoparticles driven by a precessing magnetic field in a viscous fluid.
    Lyutyy TV; Denisov SI; Reva VV; Bystrik YS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):042312. PubMed ID: 26565245
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnetically induced hyperthermia: size-dependent heating power of γ-Fe(2)O(3) nanoparticles.
    Lévy M; Wilhelm C; Siaugue JM; Horner O; Bacri JC; Gazeau F
    J Phys Condens Matter; 2008 May; 20(20):204133. PubMed ID: 21694262
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical Predictions for Spatially-Focused Heating of Magnetic Nanoparticles Guided by Magnetic Particle Imaging Field Gradients.
    Dhavalikar R; Rinaldi C
    J Magn Magn Mater; 2016 Dec; 419():267-273. PubMed ID: 28943706
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of cell and nanoparticle properties on heating and cell death in a radiofrequency field.
    Mackeyev Y; Mark C; Kumar N; Serda RE
    Acta Biomater; 2017 Apr; 53():619-630. PubMed ID: 28179157
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-time infrared thermography detection of magnetic nanoparticle hyperthermia in a murine model under a non-uniform field configuration.
    Rodrigues HF; Mello FM; Branquinho LC; Zufelato N; Silveira-Lacerda EP; Bakuzis AF
    Int J Hyperthermia; 2013 Dec; 29(8):752-67. PubMed ID: 24138472
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of spatial confinement on magnetic hyperthermia via dipolar interactions in Fe₃O₄ nanoparticles for biomedical applications.
    Sadat ME; Patel R; Sookoor J; Bud'ko SL; Ewing RC; Zhang J; Xu H; Wang Y; Pauletti GM; Mast DB; Shi D
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():52-63. PubMed ID: 25063092
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetic response of a viscoelastic ferrodispersion: From a nearly Newtonian ferrofluid to a Jeffreys ferrogel.
    Rusakov VV; Raikher YL
    J Chem Phys; 2017 Sep; 147(12):124903. PubMed ID: 28964009
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved efficiency of heat generation in nonlinear dynamics of magnetic nanoparticles.
    Rácz J; de Châtel PF; Szabó IA; Szunyogh L; Nándori I
    Phys Rev E; 2016 Jan; 93(1):012607. PubMed ID: 26871122
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoscale Brownian heating by interacting magnetic dipolar particles.
    Chalopin Y; Bacri JC; Gazeau F; Devaud M
    Sci Rep; 2017 May; 7(1):1656. PubMed ID: 28490761
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation of carboplatin-Fe@C-loaded chitosan nanoparticles and study on hyperthermia combined with pharmacotherapy for liver cancer.
    Li FR; Yan WH; Guo YH; Qi H; Zhou HX
    Int J Hyperthermia; 2009 Aug; 25(5):383-91. PubMed ID: 19391033
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New insights into the heating mechanisms and self-regulating abilities of manganite perovskite nanoparticles suitable for magnetic fluid hyperthermia.
    Natividad E; Castro M; Goglio G; Andreu I; Epherre R; Duguet E; Mediano A
    Nanoscale; 2012 Jul; 4(13):3954-62. PubMed ID: 22653748
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing Magnetic Hyperthermia Nanoparticle Heating Efficiency with Non-Sinusoidal Alternating Magnetic Field Waveforms.
    Zeinoun M; Domingo-Diez J; Rodriguez-Garcia M; Garcia O; Vasic M; Ramos M; Serrano Olmedo JJ
    Nanomaterials (Basel); 2021 Nov; 11(12):. PubMed ID: 34947589
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Power losses in a suspension of magnetic dipoles under a rotating field.
    Raikher YL; Stepanov VI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Feb; 83(2 Pt 1):021401. PubMed ID: 21405843
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitigation of eddy current heating during magnetic nanoparticle hyperthermia therapy.
    Stigliano RV; Shubitidze F; Petryk JD; Shoshiashvili L; Petryk AA; Hoopes PJ
    Int J Hyperthermia; 2016 Nov; 32(7):735-48. PubMed ID: 27436449
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Size-Dependent Heating of Magnetic Iron Oxide Nanoparticles.
    Tong S; Quinto CA; Zhang L; Mohindra P; Bao G
    ACS Nano; 2017 Jul; 11(7):6808-6816. PubMed ID: 28625045
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.