These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 30552921)

  • 1. How does physical activity and different models of exercise training affect oxidative parameters and memory?
    Feter N; Spanevello RM; Soares MSP; Spohr L; Pedra NS; Bona NP; Freitas MP; Gonzales NG; Ito LGMS; Stefanello FM; Rombaldi AJ
    Physiol Behav; 2019 Mar; 201():42-52. PubMed ID: 30552921
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Beneficial alterations in body composition, physical performance, oxidative stress, inflammatory markers, and adipocytokines induced by long-term high-intensity interval training in an aged rat model.
    Li FH; Sun L; Zhu M; Li T; Gao HE; Wu DS; Zhu L; Duan R; Liu TC
    Exp Gerontol; 2018 Nov; 113():150-162. PubMed ID: 30308288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High intensity interval training protects from Post Traumatic Stress Disorder induced cognitive impairment.
    Koyuncuoğlu T; Sevim H; Çetrez N; Meral Z; Gönenç B; Kuntsal Dertsiz E; Akakın D; Yüksel M; Kasımay Çakır Ö
    Behav Brain Res; 2021 Jan; 397():112923. PubMed ID: 32976860
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interval and continuous exercise overcome memory deficits related to β-Amyloid accumulation through modulating mitochondrial dynamics.
    Li B; Liang F; Ding X; Yan Q; Zhao Y; Zhang X; Bai Y; Huang T; Xu B
    Behav Brain Res; 2019 Dec; 376():112171. PubMed ID: 31445975
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tissue-Specific Oxidative Stress Modulation by Exercise: A Comparison between MICT and HIIT in an Obese Rat Model.
    Groussard C; Maillard F; Vazeille E; Barnich N; Sirvent P; Otero YF; Combaret L; Madeuf E; Sourdrille A; Delcros G; Etienne M; Teixeira A; Sauvanet P; Pialoux V; Boisseau N
    Oxid Med Cell Longev; 2019; 2019():1965364. PubMed ID: 31396298
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strength training and running elicit different neuroprotective outcomes in a β-amyloid peptide-mediated Alzheimer's disease model.
    Schimidt HL; Garcia A; Izquierdo I; Mello-Carpes PB; Carpes FP
    Physiol Behav; 2019 Jul; 206():206-212. PubMed ID: 30995451
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of high-intensity interval training on mitochondrial supercomplex assembly and biogenesis, mitophagy, and the AMP-activated protein kinase pathway in the soleus muscle of aged female rats.
    Han C; Lu P; Yan SZ
    Exp Gerontol; 2022 Feb; 158():111648. PubMed ID: 34861356
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anthocyanins as a potential pharmacological agent to manage memory deficit, oxidative stress and alterations in ion pump activity induced by experimental sporadic dementia of Alzheimer's type.
    Pacheco SM; Soares MSP; Gutierres JM; Gerzson MFB; Carvalho FB; Azambuja JH; Schetinger MRC; Stefanello FM; Spanevello RM
    J Nutr Biochem; 2018 Jun; 56():193-204. PubMed ID: 29587242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High intensity interval training ameliorates cognitive impairment in T2DM mice possibly by improving PI3K/Akt/mTOR Signaling-regulated autophagy in the hippocampus.
    Li X; He Q; Zhao N; Chen X; Li T; Cheng B
    Brain Res; 2021 Dec; 1773():147703. PubMed ID: 34743961
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two weeks of moderate-intensity continuous training, but not high-intensity interval training, increases insulin-stimulated intestinal glucose uptake.
    Motiani KK; Savolainen AM; Eskelinen JJ; Toivanen J; Ishizu T; Yli-Karjanmaa M; Virtanen KA; Parkkola R; Kapanen J; Grönroos TJ; Haaparanta-Solin M; Solin O; Savisto N; Ahotupa M; Löyttyniemi E; Knuuti J; Nuutila P; Kalliokoski KK; Hannukainen JC
    J Appl Physiol (1985); 2017 May; 122(5):1188-1197. PubMed ID: 28183816
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The impact of high-intensity interval training versus moderate-intensity continuous training on vascular function: a systematic review and meta-analysis.
    Ramos JS; Dalleck LC; Tjonna AE; Beetham KS; Coombes JS
    Sports Med; 2015 May; 45(5):679-92. PubMed ID: 25771785
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of short-term high-intensity interval and continuous exercise training on body composition and cardiac function in obese sarcopenic rats.
    França GO; Frantz EDC; Magliano DC; Bargut TCL; Sepúlveda-Fragoso V; Silvares RR; Daliry A; Nascimento ARD; Borges JP
    Life Sci; 2020 Sep; 256():117920. PubMed ID: 32522571
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Whole-Body High-Intensity Interval Training Induce Similar Cardiorespiratory Adaptations Compared With Traditional High-Intensity Interval Training and Moderate-Intensity Continuous Training in Healthy Men.
    Schaun GZ; Pinto SS; Silva MR; Dolinski DB; Alberton CL
    J Strength Cond Res; 2018 Oct; 32(10):2730-2742. PubMed ID: 29746386
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Beneficial Autophagic Activities, Mitochondrial Function, and Metabolic Phenotype Adaptations Promoted by High-Intensity Interval Training in a Rat Model.
    Li FH; Li T; Ai JY; Sun L; Min Z; Duan R; Zhu L; Liu YY; Liu TC
    Front Physiol; 2018; 9():571. PubMed ID: 29875683
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of l-arginine supplementation associated with continuous or interval aerobic training on chronic heart failure rats.
    Barcelos GT; Rossato DD; Perini JL; Pinheiro LP; Carvalho C; Jaenisch RB; Rhoden CR; Lago PD; Nunes RB
    Metabolism; 2017 Nov; 76():1-10. PubMed ID: 28987235
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-intensity interval training and moderate-intensity continuous training alleviate β-amyloid deposition by inhibiting NLRP3 inflammasome activation in APPswe/PS1dE9 mice.
    Liang F; Huang T; Li B; Zhao Y; Zhang X; Xu B
    Neuroreport; 2020 Mar; 31(5):425-432. PubMed ID: 32150150
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Post-exercise Effects and Long-Term Training Adaptations of Hormone Sensitive Lipase Lipolysis Induced by High-Intensity Interval Training in Adipose Tissue of Mice.
    Liu Y; Dong G; Zhao X; Huang Z; Li P; Zhang H
    Front Physiol; 2020; 11():535722. PubMed ID: 33324231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of endurance training on diurnal rhythms of superoxide dismutase activity, glutathione and lipid peroxidation in plasma of pinealectomized rats.
    Jana T; Tzveta S; Zlatina N; Natasha I; Dimitrinka A; Milena A; Katerina G
    Neurosci Lett; 2020 Jan; 716():134637. PubMed ID: 31751669
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-intensity Intermittent Training Enhances Spatial Memory and Hippocampal Neurogenesis Associated with BDNF Signaling in Rats.
    Okamoto M; Mizuuchi D; Omura K; Lee M; Oharazawa A; Yook JS; Inoue K; Soya H
    Cereb Cortex; 2021 Jul; 31(9):4386-4397. PubMed ID: 33982757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Effects of Concurrent Training Combining Both Resistance Exercise and High-Intensity Interval Training or Moderate-Intensity Continuous Training on Metabolic Syndrome.
    Da Silva MAR; Baptista LC; Neves RS; De França E; Loureiro H; Lira FS; Caperuto EC; Veríssimo MT; Martins RA
    Front Physiol; 2020; 11():572. PubMed ID: 32595518
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.