BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 30553126)

  • 21. Uncoupling proteins (UCP) in unicellular eukaryotes: true UCPs or UCP1-like acting proteins?
    Luévano-Martínez LA
    FEBS Lett; 2012 Apr; 586(7):1073-8. PubMed ID: 22569266
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The branched mitochondrial respiratory chain from Debaryomyces hansenii: components and supramolecular organization.
    Cabrera-Orefice A; Chiquete-Félix N; Espinasa-Jaramillo J; Rosas-Lemus M; Guerrero-Castillo S; Peña A; Uribe-Carvajal S
    Biochim Biophys Acta; 2014 Jan; 1837(1):73-84. PubMed ID: 23933018
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Involvement of mitochondria in the control of plant cell NAD(P)H reduction levels.
    Rasmusson AG; Wallström SV
    Biochem Soc Trans; 2010 Apr; 38(2):661-6. PubMed ID: 20298239
    [TBL] [Abstract][Full Text] [Related]  

  • 24. NADH→NAD⁺ Transhydrogenation in Adult Ascaris suum Mitochondria.
    Holowiecki A; Fioravanti CF
    J Parasitol; 2015 Jun; 101(3):358-63. PubMed ID: 25587625
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Released selective pressure on a structural domain gives new insights on the functional relaxation of mitochondrial aspartyl-tRNA synthetase.
    Schwenzer H; Scheper GC; Zorn N; Moulinier L; Gaudry A; Leize E; Martin F; Florentz C; Poch O; Sissler M
    Biochimie; 2014 May; 100():18-26. PubMed ID: 24120687
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The evolution of substrate specificity-associated residues and Ca(2+) -binding motifs in EF-hand-containing type II NAD(P)H dehydrogenases.
    Hao MS; Rasmusson AG
    Physiol Plant; 2016 Jul; 157(3):338-51. PubMed ID: 27079180
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The multiplicity of dehydrogenases in the electron transport chain of plant mitochondria.
    Rasmusson AG; Geisler DA; Møller IM
    Mitochondrion; 2008 Jan; 8(1):47-60. PubMed ID: 18033742
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Type II NAD(P)H dehydrogenases are targeted to mitochondria and chloroplasts or peroxisomes in Arabidopsis thaliana.
    Carrie C; Murcha MW; Kuehn K; Duncan O; Barthet M; Smith PM; Eubel H; Meyer E; Day DA; Millar AH; Whelan J
    FEBS Lett; 2008 Sep; 582(20):3073-9. PubMed ID: 18703057
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evidence of an alternative oxidase pathway for mitochondrial respiration in the scuticociliate Philasterides dicentrarchi.
    Mallo N; Lamas J; Leiro JM
    Protist; 2013 Nov; 164(6):824-36. PubMed ID: 24211656
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Specific and non-specific mammalian RNA terminal uridylyl transferases.
    Guschina E; Benecke BJ
    Biochim Biophys Acta; 2008 Apr; 1779(4):281-5. PubMed ID: 18067875
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Exploiting mitochondria as targets for the development of new antifungals.
    Li D; Calderone R
    Virulence; 2017 Feb; 8(2):159-168. PubMed ID: 27191707
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Suppression of the external mitochondrial NADPH dehydrogenase, NDB1, in Arabidopsis thaliana affects central metabolism and vegetative growth.
    Wallström SV; Florez-Sarasa I; Araújo WL; Aidemark M; Fernández-Fernández M; Fernie AR; Ribas-Carbó M; Rasmusson AG
    Mol Plant; 2014 Feb; 7(2):356-68. PubMed ID: 23939432
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification of AtNDI1, an internal non-phosphorylating NAD(P)H dehydrogenase in Arabidopsis mitochondria.
    Moore CS; Cook-Johnson RJ; Rudhe C; Whelan J; Day DA; Wiskich JT; Soole KL
    Plant Physiol; 2003 Dec; 133(4):1968-78. PubMed ID: 14630960
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Expression of alternative NADH dehydrogenases (NDH-2) in the phytopathogenic fungus
    Matuz-Mares D; Matus-Ortega G; Cárdenas-Monroy C; Romero-Aguilar L; Villalobos-Rocha JC; Vázquez-Meza H; Guerra-Sánchez G; Peña-Díaz A; Pardo JP
    FEBS Open Bio; 2018 Aug; 8(8):1267-1279. PubMed ID: 30221129
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structural insight into the stereoselective production of PGF2α by Old Yellow Enzyme from Trypanosoma cruzi.
    Okamoto N; Yamaguchi K; Mizohata E; Tokuoka K; Uchiyama N; Sugiyama S; Matsumura H; Inaka K; Urade Y; Inoue T
    J Biochem; 2011 Nov; 150(5):563-8. PubMed ID: 21840922
    [TBL] [Abstract][Full Text] [Related]  

  • 36. NADH: ubiquinone oxidoreductase in obligate aerobic yeasts.
    Büschges R; Bahrenberg G; Zimmermann M; Wolf K
    Yeast; 1994 Apr; 10(4):475-9. PubMed ID: 7941733
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The dual targeting ability of type II NAD(P)H dehydrogenases arose early in land plant evolution.
    Xu L; Law SR; Murcha MW; Whelan J; Carrie C
    BMC Plant Biol; 2013 Jul; 13():100. PubMed ID: 23841539
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Differential sensitivity to cadmium of key mitochondrial enzymes in the eastern oyster, Crassostrea virginica Gmelin (Bivalvia: Ostreidae).
    Ivanina AV; Habinck E; Sokolova IM
    Comp Biochem Physiol C Toxicol Pharmacol; 2008 Jul; 148(1):72-9. PubMed ID: 18434254
    [TBL] [Abstract][Full Text] [Related]  

  • 39. During the stationary growth phase, Yarrowia lipolytica prevents the overproduction of reactive oxygen species by activating an uncoupled mitochondrial respiratory pathway.
    Guerrero-Castillo S; Cabrera-Orefice A; Vázquez-Acevedo M; González-Halphen D; Uribe-Carvajal S
    Biochim Biophys Acta; 2012 Feb; 1817(2):353-62. PubMed ID: 22138628
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reactive oxygen species and nitric oxide in plant mitochondria: origin and redundant regulatory systems.
    Blokhina O; Fagerstedt KV
    Physiol Plant; 2010 Apr; 138(4):447-62. PubMed ID: 20059731
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.