These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
354 related articles for article (PubMed ID: 30553146)
1. Surface plasmon resonance of gold nanoparticles as a colorimetric sensor for indirect detection of Cefixime. Masoudyfar Z; Elhami S Spectrochim Acta A Mol Biomol Spectrosc; 2019 Mar; 211():234-238. PubMed ID: 30553146 [TBL] [Abstract][Full Text] [Related]
2. Localized surface plasmon resonance of gold nanoparticles as colorimetric probes for determination of Isoniazid in pharmacological formulation. Zargar B; Hatamie A Spectrochim Acta A Mol Biomol Spectrosc; 2013 Apr; 106():185-9. PubMed ID: 23380146 [TBL] [Abstract][Full Text] [Related]
3. Ultrasensitive colorimetric detection of heparin based on self-assembly of gold nanoparticles on graphene oxide. Fu X; Chen L; Li J Analyst; 2012 Aug; 137(16):3653-8. PubMed ID: 22741162 [TBL] [Abstract][Full Text] [Related]
4. Unmodified gold nanoparticles as a simple colorimetric probe for ramoplanin detection. Teepoo S; Chumsaeng P; Palasak K; Bousod N; Mhadbamrung N; Sae-lim P Talanta; 2013 Dec; 117():518-22. PubMed ID: 24209375 [TBL] [Abstract][Full Text] [Related]
5. A novel sensor for determination of naproxen based on change in localized surface plasmon peak of functionalized gold nanoparticles. Khodaveisi J; Shabani AMH; Dadfarnia S; Saberi D Spectrochim Acta A Mol Biomol Spectrosc; 2017 May; 179():11-16. PubMed ID: 28213140 [TBL] [Abstract][Full Text] [Related]
6. Sensitive colorimetric detection of melamine in processed raw milk using asymmetrically PEGylated gold nanoparticles. Chen XY; Ha W; Shi YP Talanta; 2019 Mar; 194():475-484. PubMed ID: 30609561 [TBL] [Abstract][Full Text] [Related]
7. Sucrose capped gold nanoparticles as a plasmonic chemical sensor based on non-covalent interactions: Application for selective detection of vitamins B Shrivas K; Nirmalkar N; Thakur SS; Deb MK; Shinde SS; Shankar R Food Chem; 2018 Jun; 250():14-21. PubMed ID: 29412903 [TBL] [Abstract][Full Text] [Related]
8. Non-enzymatic sensing of dopamine by localized surface plasmon resonance using carbon dots-functionalized gold nanoparticles. Amiri M; Dadfarnia S; Haji Shabani AM; Sadjadi S J Pharm Biomed Anal; 2019 Aug; 172():223-229. PubMed ID: 31060035 [TBL] [Abstract][Full Text] [Related]
9. Sensitive and selective localized surface plasmon resonance light-scattering sensor for Ag+ with unmodified gold nanoparticles. Wu C; Xiong C; Wang L; Lan C; Ling L Analyst; 2010 Oct; 135(10):2682-7. PubMed ID: 20820488 [TBL] [Abstract][Full Text] [Related]
10. Optical detection of phenolic compounds based on the surface plasmon resonance band of Au nanoparticles. Nezhad MR; Alimohammadi M; Tashkhourian J; Razavian SM Spectrochim Acta A Mol Biomol Spectrosc; 2008 Nov; 71(1):199-203. PubMed ID: 18222104 [TBL] [Abstract][Full Text] [Related]
11. Environmental assessment of 2-mercaptobenzimidazole based on the surface plasmon resonance band of gold nanoparticles. Rastegarzadeh S; Barkat Rezaei Z Environ Monit Assess; 2013 Nov; 185(11):9037-42. PubMed ID: 23657736 [TBL] [Abstract][Full Text] [Related]
12. Highly sensitive colorimetric detection of glucose in a serum based on DNA-embeded Au@Ag core-shell nanoparticles. Kang F; Hou X; Xu K Nanotechnology; 2015 Oct; 26(40):405707. PubMed ID: 26376788 [TBL] [Abstract][Full Text] [Related]
13. Single-step detection of norovirus tuning localized surface plasmon resonance-induced optical signal between gold nanoparticles and quantum dots. Nasrin F; Chowdhury AD; Takemura K; Lee J; Adegoke O; Deo VK; Abe F; Suzuki T; Park EY Biosens Bioelectron; 2018 Dec; 122():16-24. PubMed ID: 30236804 [TBL] [Abstract][Full Text] [Related]
14. Surface plasmon resonance additivity of gold nanoparticles for colorimetric identification of cysteine and homocysteine in biological fluids. Gao H; Shen W; Lu C; Liang H; Yuan Q Talanta; 2013 Oct; 115():1-5. PubMed ID: 24054554 [TBL] [Abstract][Full Text] [Related]
15. A Simple and Green Route for Room-Temperature Synthesis of Gold Nanoparticles and Selective Colorimetric Detection of Cysteine. Bagci PO; Wang YC; Gunasekaran S J Food Sci; 2015 Sep; 80(9):N2071-8. PubMed ID: 26239641 [TBL] [Abstract][Full Text] [Related]
16. Highly sensitive detection of Ceftriaxone in water, food, pharmaceutical and biological samples based on gold nanoparticles in aqueous and micellar media. Shahrouei F; Elhami S; Tahanpesar E Spectrochim Acta A Mol Biomol Spectrosc; 2018 Oct; 203():287-293. PubMed ID: 29879643 [TBL] [Abstract][Full Text] [Related]
17. Luminol functionalized gold nanoparticles as colorimetric and chemiluminescent probes for visual, label free, highly sensitive and selective detection of minocycline. He Y; Peng R Nanotechnology; 2014 Nov; 25(45):455502. PubMed ID: 25327146 [TBL] [Abstract][Full Text] [Related]
18. Using lactosylated cysteine functionalized gold nanoparticles as colorimetric sensing probes for rapid detection of the ricin B chain. Kandasamy K; Selvaprakash K; Chen YC Mikrochim Acta; 2019 Nov; 186(12):847. PubMed ID: 31776791 [TBL] [Abstract][Full Text] [Related]
19. Recyclable colorimetric sensor of Cr Sang F; Li X; Zhang Z; Liu J; Chen G Spectrochim Acta A Mol Biomol Spectrosc; 2018 Mar; 193():109-116. PubMed ID: 29223455 [TBL] [Abstract][Full Text] [Related]
20. Colorimetric recognition of pazufloxacin mesilate based on the aggregation of gold nanoparticles. Kong S; Liao M; Gu Y; Li N; Wu P; Zhang T; He H Spectrochim Acta A Mol Biomol Spectrosc; 2016 Mar; 157():244-250. PubMed ID: 26774816 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]