These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 30553206)

  • 1. Functionalized rifampicin-loaded nanostructured lipid carriers enhance macrophages uptake and antimycobacterial activity.
    Carneiro SP; Carvalho KV; de Oliveira Aguiar Soares RD; Carneiro CM; de Andrade MHG; Duarte RS; Dos Santos ODH
    Colloids Surf B Biointerfaces; 2019 Mar; 175():306-313. PubMed ID: 30553206
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeted macrophages delivery of rifampicin-loaded lipid nanoparticles to improve tuberculosis treatment.
    Vieira AC; Magalhães J; Rocha S; Cardoso MS; Santos SG; Borges M; Pinheiro M; Reis S
    Nanomedicine (Lond); 2017 Dec; 12(24):2721-2736. PubMed ID: 29119867
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro biological evaluation of new antimycobacterial salicylanilide-tuftsin conjugates.
    Baranyai Z; Krátký M; Vosátka R; Szabó E; Senoner Z; Dávid S; Stolaříková J; Vinšová J; Bősze S
    Eur J Med Chem; 2017 Jun; 133():152-173. PubMed ID: 28384546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeted intracellular delivery of antituberculosis drugs to Mycobacterium tuberculosis-infected macrophages via functionalized mesoporous silica nanoparticles.
    Clemens DL; Lee BY; Xue M; Thomas CR; Meng H; Ferris D; Nel AE; Zink JI; Horwitz MA
    Antimicrob Agents Chemother; 2012 May; 56(5):2535-45. PubMed ID: 22354311
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multimetallic Microparticles Increase the Potency of Rifampicin against Intracellular Mycobacterium tuberculosis.
    Ellis T; Chiappi M; García-Trenco A; Al-Ejji M; Sarkar S; Georgiou TK; Shaffer MSP; Tetley TD; Schwander S; Ryan MP; Porter AE
    ACS Nano; 2018 Jun; 12(6):5228-5240. PubMed ID: 29767993
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancement of Antimycobacterial Activity of Rifampicin Using Mannose-Anchored Lipid Nanoparticles against Intramacrophage Mycobacteria.
    Mistry N; Bandyopadhyaya R; Mehra S
    ACS Appl Bio Mater; 2022 Dec; 5(12):5779-5789. PubMed ID: 36441965
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Encapsulation of zinc-rifampicin complex into transferrin-conjugated silver quantum-dots improves its antimycobacterial activity and stability and facilitates drug delivery into macrophages.
    Pati R; Sahu R; Panda J; Sonawane A
    Sci Rep; 2016 Apr; 6():24184. PubMed ID: 27113139
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formulation, optimization, and characterization of rifampicin-loaded solid lipid nanoparticles for the treatment of tuberculosis.
    Chokshi NV; Khatri HN; Patel MM
    Drug Dev Ind Pharm; 2018 Dec; 44(12):1975-1989. PubMed ID: 30058392
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved antibacterial function of Rifampicin-loaded solid lipid nanoparticles on Brucella abortus.
    Ghaderkhani J; Yousefimashouf R; Arabestani M; Roshanaei G; Asl SS; Abbasalipourkabir R
    Artif Cells Nanomed Biotechnol; 2019 Dec; 47(1):1181-1193. PubMed ID: 30942627
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Matryoshka-type gastro-resistant microparticles for the oral treatment of Mycobacterium tuberculosis.
    Andreu V; Larrea A; Rodriguez-Fernandez P; Alfaro S; Gracia B; Lucía A; Usón L; Gomez AC; Mendoza G; Lacoma A; Dominguez J; Prat C; Sebastian V; Ainsa JA; Arruebo M
    Nanomedicine (Lond); 2019 Mar; 14(6):707-726. PubMed ID: 30734643
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhaled Solid Lipid Microparticles to target alveolar macrophages for tuberculosis.
    Maretti E; Rossi T; Bondi M; Croce MA; Hanuskova M; Leo E; Sacchetti F; Iannuccelli V
    Int J Pharm; 2014 Feb; 462(1-2):74-82. PubMed ID: 24374224
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual delivery of tuberculosis drugs via cyclodextrin conjugated curdlan nanoparticles to infected macrophages.
    Yunus Basha R; T S SK; Doble M
    Carbohydr Polym; 2019 Aug; 218():53-62. PubMed ID: 31221343
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mannosylated solid lipid nanoparticles for the selective delivery of rifampicin to macrophages.
    Vieira ACC; Chaves LL; Pinheiro M; Lima SAC; Ferreira D; Sarmento B; Reis S
    Artif Cells Nanomed Biotechnol; 2018; 46(sup1):653-663. PubMed ID: 29433346
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gold Nanorods as Drug Delivery Vehicles for Rifampicin Greatly Improve the Efficacy of Combating Mycobacterium tuberculosis with Good Biocompatibility with the Host Cells.
    Ali HR; Ali MR; Wu Y; Selim SA; Abdelaal HF; Nasr EA; El-Sayed MA
    Bioconjug Chem; 2016 Oct; 27(10):2486-2492. PubMed ID: 27595304
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gallium nanoparticles facilitate phagosome maturation and inhibit growth of virulent Mycobacterium tuberculosis in macrophages.
    Choi SR; Britigan BE; Moran DM; Narayanasamy P
    PLoS One; 2017; 12(5):e0177987. PubMed ID: 28542623
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mucoadhesive chitosan-coated solid lipid nanoparticles for better management of tuberculosis.
    Vieira ACC; Chaves LL; Pinheiro S; Pinto S; Pinheiro M; Lima SC; Ferreira D; Sarmento B; Reis S
    Int J Pharm; 2018 Jan; 536(1):478-485. PubMed ID: 29203137
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functionalization of PLGA Nanoparticles with 1,3-β-glucan Enhances the Intracellular Pharmacokinetics of Rifampicin in Macrophages.
    Tukulula M; Gouveia L; Paixao P; Hayeshi R; Naicker B; Dube A
    Pharm Res; 2018 Mar; 35(6):111. PubMed ID: 29600438
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Promising Chitosan-Coated Alginate-Tween 80 Nanoparticles as Rifampicin Coadministered Ascorbic Acid Delivery Carrier Against Mycobacterium tuberculosis.
    Scolari IR; Páez PL; Sánchez-Borzone ME; Granero GE
    AAPS PharmSciTech; 2019 Jan; 20(2):67. PubMed ID: 30627867
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thioridazine in PLGA nanoparticles reduces toxicity and improves rifampicin therapy against mycobacterial infection in zebrafish.
    Vibe CB; Fenaroli F; Pires D; Wilson SR; Bogoeva V; Kalluru R; Speth M; Anes E; Griffiths G; Hildahl J
    Nanotoxicology; 2016 Aug; 10(6):680-8. PubMed ID: 26573343
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immune response to antituberculosis drug-loaded gelatin and polyisobutyl-cyanoacrylate nanoparticles in macrophages.
    Sarfraz M; Shi W; Gao Y; Clas SD; Roa W; Bou-Chacra N; Löbenberg R
    Ther Deliv; 2016; 7(4):213-28. PubMed ID: 27010984
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.