These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 30553245)

  • 1. Granularity impact on hotspot formation and local chemistry in shocked nanostructured RDX.
    Bidault X; Pineau N
    J Chem Phys; 2018 Dec; 149(22):224703. PubMed ID: 30553245
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular simulation of the influence of interface faceting on the shock sensitivity of a model plastic bonded explosive.
    Shi Y; Brenner DW
    J Phys Chem B; 2008 Nov; 112(47):14898-904. PubMed ID: 18973371
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of surface energy on the shock properties of granular explosives.
    Bidault X; Pineau N
    J Chem Phys; 2018 Jan; 148(3):034704. PubMed ID: 29352795
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular Design and Property Prediction for a Series of Novel Dicyclic Cyclotrimethylene Trinitramines (RDX) Derivatized as High Energy Density Materials.
    Shen C; Wang P; Lu M
    J Phys Chem A; 2015 Jul; 119(29):8250-5. PubMed ID: 26132775
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly Energetic Materials-Hosted 3D Inverse Opal-like Porous Carbon: Stabilization/Desensitization of Explosives.
    Shin MK; Kim MH; Kim GY; Kang B; Chae JS; Haam S
    ACS Appl Mater Interfaces; 2018 Dec; 10(50):43857-43864. PubMed ID: 30475574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of explosive nanoparticles in a porous chromium(III) oxide matrix: a first attempt to control the reactivity of explosives.
    Comet M; Siegert B; Pichot V; Gibot P; Spitzer D
    Nanotechnology; 2008 Jul; 19(28):285716. PubMed ID: 21828750
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular dynamics simulations of RDX and RDX-based plastic-bonded explosives.
    Zhu W; Xiao J; Zhu W; Xiao H
    J Hazard Mater; 2009 May; 164(2-3):1082-8. PubMed ID: 18938030
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shock-Induced Hot Spot Formation and Spalling in 1,3,5-trinitroperhydro-1,3,5-triazine Containing a Cube Void.
    Zhang Y; Liu H; Yang Z; Li Q; He Y
    ACS Omega; 2019 May; 4(5):8031-8038. PubMed ID: 31459892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of exothermic chemical reactions on laser-induced shock waves.
    Gottfried JL
    Phys Chem Chem Phys; 2014 Oct; 16(39):21452-66. PubMed ID: 25182866
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energetic material response to ultrafast indirect laser heating.
    Dang NC; Gottfried JL; De Lucia FC
    Appl Opt; 2017 Jan; 56(3):B85-B91. PubMed ID: 28157869
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular dynamics study of the structures and properties of RDX/GAP propellant.
    Li M; Li F; Shen R; Guo X
    J Hazard Mater; 2011 Feb; 186(2-3):2031-6. PubMed ID: 21237558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ranking the Drop-Weight Impact Sensitivity of Common Explosives Using Arrhenius Chemical Rates Computed from Quantum Molecular Dynamics Simulations.
    Cawkwell MJ; Manner VW
    J Phys Chem A; 2020 Jan; 124(1):74-81. PubMed ID: 31841343
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nitrogen-rich heterocycles as reactivity retardants in shocked insensitive explosives.
    Manaa MR; Reed EJ; Fried LE; Goldman N
    J Am Chem Soc; 2009 Apr; 131(15):5483-7. PubMed ID: 19323461
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding ultrafine nanodiamond formation using nanostructured explosives.
    Pichot V; Risse B; Schnell F; Mory J; Spitzer D
    Sci Rep; 2013; 3():2159. PubMed ID: 23831716
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High pressure-high temperature decomposition of γ-cyclotrimethylene trinitramine.
    Dreger ZA; McCluskey MD; Gupta YM
    J Phys Chem A; 2012 Oct; 116(39):9680-8. PubMed ID: 22971173
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shock response of single crystal and nanocrystalline pentaerythritol tetranitrate: Implications to hotspot formation in energetic materials.
    Cai Y; Zhao FP; An Q; Wu HA; Goddard WA; Luo SN
    J Chem Phys; 2013 Oct; 139(16):164704. PubMed ID: 24182061
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decomposition of γ-cyclotrimethylene trinitramine (γ-RDX): relevance for shock wave initiation.
    Dreger ZA; Gupta YM
    J Phys Chem A; 2012 Aug; 116(34):8713-7. PubMed ID: 22873636
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Laser-shocked energetic materials with metal additives: evaluation of chemistry and detonation performance.
    Gottfried JL; Bukowski EJ
    Appl Opt; 2017 Jan; 56(3):B47-B57. PubMed ID: 28157864
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pressure-Thresholded Response in Cylindrically Shocked Cyclotrimethylene Trinitramine (RDX).
    Dresselhaus-Cooper LE; Martynowych DJ; Zhang F; Tsay C; Ilavsky J; Wang SG; Chen YS; Nelson KA
    J Phys Chem A; 2020 Apr; 124(17):3301-3313. PubMed ID: 32009390
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The elastic constants and related properties of the energetic material cyclotrimethylene trinitramine (RDX) determined by Brillouin scattering.
    Haycraft JJ; Stevens LL; Eckhardt CJ
    J Chem Phys; 2006 Jan; 124(2):024712. PubMed ID: 16422631
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.