These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 30553330)
1. Evaluation of novel microcrystalline cellulose from Ensete glaucum (Roxb.) Cheesman biomass as sustainable drug delivery biomaterial. Pachuau L; Dutta RS; Hauzel L; Devi TB; Deka D Carbohydr Polym; 2019 Feb; 206():336-343. PubMed ID: 30553330 [TBL] [Abstract][Full Text] [Related]
2. Evaluation of non-crystalline cellulose as a novel excipient in solid dose products. Pawar K; Render D; Rangari V; Lee Y; Babu RJ Drug Dev Ind Pharm; 2018 Sep; 44(9):1512-1519. PubMed ID: 29734848 [TBL] [Abstract][Full Text] [Related]
3. Novel multifunctional pharmaceutical excipients derived from microcrystalline cellulose-starch microparticulate composites prepared by compatibilized reactive polymer blending. Builders PF; Bonaventure AM; Tiwalade A; Okpako LC; Attama AA Int J Pharm; 2010 Mar; 388(1-2):159-67. PubMed ID: 20060448 [TBL] [Abstract][Full Text] [Related]
4. Surface engineered excipients: II. Simultaneous milling and dry coating for preparation of fine-grade microcrystalline cellulose with enhanced properties. Chen L; Ding X; He Z; Fan S; Kunnath KT; Zheng K; Davé RN Int J Pharm; 2018 Jul; 546(1-2):125-136. PubMed ID: 29763689 [TBL] [Abstract][Full Text] [Related]
5. Comparative evaluation of silicified microcrystalline cellulose II as a direct compression vehicle. Rojas J; Kumar V Int J Pharm; 2011 Sep; 416(1):120-8. PubMed ID: 21708237 [TBL] [Abstract][Full Text] [Related]
6. Microcrystalline cellulose from soybean hull as an excipient in solid dosage forms: Preparation, powder characterization, and tableting properties. Alamdari NE; Aksoy B; Babu RJ; Jiang Z Int J Biol Macromol; 2024 Jun; 270(Pt 1):132298. PubMed ID: 38750863 [TBL] [Abstract][Full Text] [Related]
7. Development of Tablet Formulation of Amorphous Solid Dispersions Prepared by Hot Melt Extrusion Using Quality by Design Approach. Agrawal A; Dudhedia M; Deng W; Shepard K; Zhong L; Povilaitis E; Zimny E AAPS PharmSciTech; 2016 Feb; 17(1):214-32. PubMed ID: 26757898 [TBL] [Abstract][Full Text] [Related]
8. Combining experimental design and orthogonal projections to latent structures to study the influence of microcrystalline cellulose properties on roll compaction. Dumarey M; Wikström H; Fransson M; Sparén A; Tajarobi P; Josefson M; Trygg J Int J Pharm; 2011 Sep; 416(1):110-9. PubMed ID: 21708239 [TBL] [Abstract][Full Text] [Related]
9. Compaction of functionalized calcium carbonate, a porous and crystalline microparticulate material with a lamellar surface. Stirnimann T; Atria S; Schoelkopf J; Gane PA; Alles R; Huwyler J; Puchkov M Int J Pharm; 2014 May; 466(1-2):266-75. PubMed ID: 24631309 [TBL] [Abstract][Full Text] [Related]
10. Modulation of the tabletting behaviour of microcrystalline cellulose pellets by the incorporation of polyethylene glycol. Nicklasson F; Alderborn G Eur J Pharm Sci; 1999 Oct; 9(1):57-65. PubMed ID: 10493997 [TBL] [Abstract][Full Text] [Related]
11. Influence of MCC II fraction and storage conditions on pellet properties. Krueger C; Thommes M; Kleinebudde P Eur J Pharm Biopharm; 2013 Nov; 85(3 Pt B):1039-45. PubMed ID: 23872176 [TBL] [Abstract][Full Text] [Related]
12. A study of a new co-processed dry binder based on spray-dried lactose and microcrystalline cellulose. Mužíková J; Sináglová P Ceska Slov Farm; 2013 Jun; 62(3):127-31. PubMed ID: 23961814 [TBL] [Abstract][Full Text] [Related]
13. The granule porosity controls the loss of compactibility for both dry- and wet-processed cellulose granules but at different rate. Nordström J; Alderborn G J Pharm Sci; 2015 Jun; 104(6):2029-2039. PubMed ID: 25872760 [TBL] [Abstract][Full Text] [Related]
14. Investigation of compressibility and compactibility parameters of roller compacted Theophylline and its binary mixtures. Hadžović E; Betz G; Hadžidedić S; El-Arini SK; Leuenberger H Int J Pharm; 2011 Sep; 416(1):97-103. PubMed ID: 21704142 [TBL] [Abstract][Full Text] [Related]
15. Formulation and evaluation of nanocrystalline cellulose as a potential disintegrant. Wang C; Huang H; Jia M; Jin S; Zhao W; Cha R Carbohydr Polym; 2015 Oct; 130():275-9. PubMed ID: 26076627 [TBL] [Abstract][Full Text] [Related]
16. Extraction and characterization of microcrystalline cellulose from fodder grass; Setaria glauca (L) P. Beauv, and its potential as a drug delivery vehicle for isoniazid, a first line antituberculosis drug. Kalita RD; Nath Y; Ochubiojo ME; Buragohain AK Colloids Surf B Biointerfaces; 2013 Aug; 108():85-9. PubMed ID: 23524080 [TBL] [Abstract][Full Text] [Related]
17. New direct compression excipient from tigernut starch: physicochemical and functional properties. Builders PF; Anwunobi PA; Mbah CC; Adikwu MU AAPS PharmSciTech; 2013 Jun; 14(2):818-27. PubMed ID: 23649994 [TBL] [Abstract][Full Text] [Related]
18. Material and Compression Properties of Cedrela odorata Gum Co-Processed with Plantain Starch and Microcrystalline Cellulose. Adetunji OA; Odeniyi MA Polim Med; 2016; 46(1):35-43. PubMed ID: 28397417 [TBL] [Abstract][Full Text] [Related]
19. True density of microcrystalline cellulose. Sun CC J Pharm Sci; 2005 Oct; 94(10):2132-4. PubMed ID: 16136576 [TBL] [Abstract][Full Text] [Related]
20. The role of intra- and extragranular microcrystalline cellulose in tablet dissolution. Li JZ; Rekhi GS; Augsburger LL; Shangraw RF Pharm Dev Technol; 1996 Dec; 1(4):343-55. PubMed ID: 9552318 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]