BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 30553490)

  • 1. Opening the toolkit for genetic analysis and control of Anopheles mosquito vectors.
    Adolfi A; Lycett GJ
    Curr Opin Insect Sci; 2018 Dec; 30():8-18. PubMed ID: 30553490
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic diversity of the African malaria vector Anopheles gambiae.
    ; ; ; ; ; ; ; ; ; ; ; ; ; ;
    Nature; 2017 Dec; 552(7683):96-100. PubMed ID: 29186111
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular tools and genetic markers for the generation of transgenic sexing strains in Anopheline mosquitoes.
    Bernardini F; Haghighat-Khah RE; Galizi R; Hammond AM; Nolan T; Crisanti A
    Parasit Vectors; 2018 Dec; 11(Suppl 2):660. PubMed ID: 30583738
    [TBL] [Abstract][Full Text] [Related]  

  • 4. piggyBac-mediated germline transformation of the malaria mosquito Anopheles sinensis (Diptera: Culicidae).
    Liu JG; Qiao L; Zhang JJ; Chen B; He ZB
    Insect Sci; 2021 Aug; 28(4):1202-1206. PubMed ID: 32519503
    [No Abstract]   [Full Text] [Related]  

  • 5. Curing mosquitoes with genetic approaches for malaria control.
    Kefi M; Cardoso-Jaime V; Saab SA; Dimopoulos G
    Trends Parasitol; 2024 Jun; 40(6):487-499. PubMed ID: 38760256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation and characterization of a temperature-sensitive lethal strain of Anopheles arabiensis for SIT-based application.
    Ndo C; Poumachu Y; Metitsi D; Awono-Ambene HP; Tchuinkam T; Gilles JLR; Bourtzis K
    Parasit Vectors; 2018 Dec; 11(Suppl 2):659. PubMed ID: 30583745
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of silencing immunity related genes on longevity in a naturally occurring Anopheles arabiensis mosquito population from southwest Ethiopia.
    Debalke S; Habtewold T; Duchateau L; Christophides GK
    Parasit Vectors; 2019 Apr; 12(1):174. PubMed ID: 30992084
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Radiation with reticulation marks the origin of a major malaria vector.
    Small ST; Labbé F; Lobo NF; Koekemoer LL; Sikaala CH; Neafsey DE; Hahn MW; Fontaine MC; Besansky NJ
    Proc Natl Acad Sci U S A; 2020 Dec; 117(50):31583-31590. PubMed ID: 33262284
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-resolution transcriptional profiling of Anopheles gambiae spermatogenesis reveals mechanisms of sex chromosome regulation.
    Taxiarchi C; Kranjc N; Kriezis A; Kyrou K; Bernardini F; Russell S; Nolan T; Crisanti A; Galizi R
    Sci Rep; 2019 Oct; 9(1):14841. PubMed ID: 31619757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modelling the potential of genetic control of malaria mosquitoes at national scale.
    North AR; Burt A; Godfray HCJ
    BMC Biol; 2019 Mar; 17(1):26. PubMed ID: 30922310
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A perspective on the need and current status of efficient sex separation methods for mosquito genetic control.
    Papathanos PA; Bourtzis K; Tripet F; Bossin H; Virginio JF; Capurro ML; Pedrosa MC; Guindo A; Sylla L; Coulibaly MB; Yao FA; Epopa PS; Diabate A
    Parasit Vectors; 2018 Dec; 11(Suppl 2):654. PubMed ID: 30583720
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Site-Directed φC31-Mediated Integration and Cassette Exchange in Anopheles Vectors of Malaria.
    Adolfi A; Lynd A; Lycett GJ; James AA
    J Vis Exp; 2021 Feb; (168):. PubMed ID: 33616090
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Converting endogenous genes of the malaria mosquito into simple non-autonomous gene drives for population replacement.
    Hoermann A; Tapanelli S; Capriotti P; Del Corsano G; Masters EK; Habtewold T; Christophides GK; Windbichler N
    Elife; 2021 Apr; 10():. PubMed ID: 33845943
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Malaria vector control in the third millennium: progress and perspectives of molecular approaches.
    Catteruccia F
    Pest Manag Sci; 2007 Jul; 63(7):634-40. PubMed ID: 17373671
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pure early zygotic genes in the Asian malaria mosquito Anopheles stephensi.
    Wu Y; Hu W; Biedler JK; Chen XG; Tu ZJ
    Parasit Vectors; 2018 Dec; 11(Suppl 2):652. PubMed ID: 30583723
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Laboratory rearing of Anopheles arabiensis: impact on genetic variability and implications for Sterile Insect Technique (SIT) based mosquito control in northern Sudan.
    Azrag RS; Ibrahim K; Malcolm C; Rayah EE; El-Sayed B
    Malar J; 2016 Aug; 15(1):432. PubMed ID: 27799066
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A transgenic tool to assess Anopheles mating competitiveness in the field.
    Smidler AL; Scott SN; Mameli E; Shaw WR; Catteruccia F
    Parasit Vectors; 2018 Dec; 11(Suppl 2):651. PubMed ID: 30583744
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The
    Riehle MM; Bukhari T; Gneme A; Guelbeogo WM; Coulibaly B; Fofana A; Pain A; Bischoff E; Renaud F; Beavogui AH; Traore SF; Sagnon N; Vernick KD
    Elife; 2017 Jun; 6():. PubMed ID: 28643631
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neotropical Anopheles (Kerteszia) mosquitoes associated with bromeliad-malaria transmission in a changing world.
    Multini LC; Wilke ABB; Marrelli MT
    Acta Trop; 2020 May; 205():105413. PubMed ID: 32088278
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new species in the major malaria vector complex sheds light on reticulated species evolution.
    Barrón MG; Paupy C; Rahola N; Akone-Ella O; Ngangue MF; Wilson-Bahun TA; Pombi M; Kengne P; Costantini C; Simard F; González J; Ayala D
    Sci Rep; 2019 Oct; 9(1):14753. PubMed ID: 31611571
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.