These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
478 related articles for article (PubMed ID: 30553805)
1. Enantioselective synthesis of enantiopure β-amino alcohols via kinetic resolution and asymmetric reductive amination by a robust transaminase from Mycobacterium vanbaalenii. Zhang JD; Zhao JW; Gao LL; Chang HH; Wei WL; Xu JH J Biotechnol; 2019 Jan; 290():24-32. PubMed ID: 30553805 [TBL] [Abstract][Full Text] [Related]
2. Enantioselective Cascade Biocatalysis for Deracemization of Racemic β-Amino Alcohols to Enantiopure (S)-β-Amino Alcohols by Employing Cyclohexylamine Oxidase and ω-Transaminase. Zhang JD; Chang YW; Dong R; Yang XX; Gao LL; Li J; Huang SP; Guo XM; Zhang CF; Chang HH Chembiochem; 2021 Jan; 22(1):124-128. PubMed ID: 32789939 [TBL] [Abstract][Full Text] [Related]
3. High throughput solid-phase screening of bacteria with cyclic amino alcohol deamination activity for enantioselective synthesis of chiral cyclic β-amino alcohols. Chang YW; Zhang JD; Yang XX; Li J; Gao LL; Huang SP; Guo XM; Zhang CF; Chang HH; Xu JH Biotechnol Lett; 2020 Aug; 42(8):1501-1511. PubMed ID: 32219689 [TBL] [Abstract][Full Text] [Related]
4. Efficient biosynthesis of (R)-3-amino-1-butanol by a novel (R)-selective transaminase from Actinobacteria sp. Tang XL; Zhang NN; Ye GY; Zheng YG J Biotechnol; 2019 Apr; 295():49-54. PubMed ID: 30853639 [TBL] [Abstract][Full Text] [Related]
5. Characterization of Four New Distinct ω-Transaminases from Pseudomonas putida NBRC 14164 for Kinetic Resolution of Racemic Amines and Amino Alcohols. Wu HL; Zhang JD; Zhang CF; Fan XJ; Chang HH; Wei WL Appl Biochem Biotechnol; 2017 Mar; 181(3):972-985. PubMed ID: 27714638 [TBL] [Abstract][Full Text] [Related]
6. One pot simultaneous preparation of both enantiomer of β-amino alcohol and vicinal diol via cascade biocatalysis. Zhao JW; Wu HL; Zhang JD; Gao WC; Fan XJ; Chang HH; Wei WL; Xu JH Biotechnol Lett; 2018 Feb; 40(2):349-358. PubMed ID: 29124518 [TBL] [Abstract][Full Text] [Related]
7. A high-throughput microtiter plate assay for the discovery of active and enantioselective amino alcohol-specific transaminases. Zhang JD; Wu HL; Meng T; Zhang CF; Fan XJ; Chang HH; Wei WL Anal Biochem; 2017 Feb; 518():94-101. PubMed ID: 27899283 [TBL] [Abstract][Full Text] [Related]
8. Immobilised enzyme microreactor for screening of multi-step bioconversions: characterisation of a de novo transketolase-ω-transaminase pathway to synthesise chiral amino alcohols. Matosevic S; Lye GJ; Baganz F J Biotechnol; 2011 Sep; 155(3):320-9. PubMed ID: 21807042 [TBL] [Abstract][Full Text] [Related]
9. In vivo plug-and-play: a modular multi-enzyme single-cell catalyst for the asymmetric amination of ketoacids and ketones. Farnberger JE; Lorenz E; Richter N; Wendisch VF; Kroutil W Microb Cell Fact; 2017 Jul; 16(1):132. PubMed ID: 28754115 [TBL] [Abstract][Full Text] [Related]
11. Creation of a robust and R-selective ω-amine transaminase for the asymmetric synthesis of sitagliptin intermediate on a kilogram scale. Cheng F; Chen XL; Li MY; Zhang XJ; Jia DX; Wang YJ; Liu ZQ; Zheng YG Enzyme Microb Technol; 2020 Nov; 141():109655. PubMed ID: 33051014 [TBL] [Abstract][Full Text] [Related]
12. Reshaping the substrate binding region of (R)-selective ω-transaminase for asymmetric synthesis of (R)-3-amino-1-butanol. Gao X; Zhang X; Zhu N; Mou Y; Zhang H; Liu X; Wei P Appl Microbiol Biotechnol; 2020 May; 104(9):3959-3969. PubMed ID: 32185434 [TBL] [Abstract][Full Text] [Related]
13. One-pot synthesis of amino-alcohols using a de-novo transketolase and beta-alanine: pyruvate transaminase pathway in Escherichia coli. Ingram CU; Bommer M; Smith ME; Dalby PA; Ward JM; Hailes HC; Lye GJ Biotechnol Bioeng; 2007 Feb; 96(3):559-69. PubMed ID: 16902948 [TBL] [Abstract][Full Text] [Related]
14. Enzymatic synthesis of chiral γ-amino acids using ω-transaminase. Shon M; Shanmugavel R; Shin G; Mathew S; Lee SH; Yun H Chem Commun (Camb); 2014 Oct; 50(84):12680-3. PubMed ID: 25207334 [TBL] [Abstract][Full Text] [Related]
15. Designing of a Cofactor Self-Sufficient Whole-Cell Biocatalyst System for Production of 1,2-Amino Alcohols from Epoxides. Liu S; Zhang X; Liu F; Xu M; Yang T; Long M; Zhou J; Osire T; Yang S; Rao Z ACS Synth Biol; 2019 Apr; 8(4):734-743. PubMed ID: 30840437 [TBL] [Abstract][Full Text] [Related]
16. Identification of novel thermostable taurine-pyruvate transaminase from Geobacillus thermodenitrificans for chiral amine synthesis. Chen Y; Yi D; Jiang S; Wei D Appl Microbiol Biotechnol; 2016 Apr; 100(7):3101-11. PubMed ID: 26577674 [TBL] [Abstract][Full Text] [Related]
17. Biochemical characterization of thermostable ω-transaminase from Sphaerobacter thermophilus and its application for producing aromatic β- and γ-amino acids. Mathew S; Nadarajan SP; Chung T; Park HH; Yun H Enzyme Microb Technol; 2016 Jun; 87-88():52-60. PubMed ID: 27178795 [TBL] [Abstract][Full Text] [Related]
18. Asymmetric Synthesis of N-Substituted 1,2-Amino Alcohols from Simple Aldehydes and Amines by One-Pot Sequential Enzymatic Hydroxymethylation and Asymmetric Reductive Amination. Li Y; Hu N; Xu Z; Cui Y; Feng J; Yao P; Wu Q; Zhu D; Ma Y Angew Chem Int Ed Engl; 2022 Apr; 61(17):e202116344. PubMed ID: 35166000 [TBL] [Abstract][Full Text] [Related]
19. Kinetic resolution of aromatic β-amino acids by ω-transaminase. Bea HS; Park HJ; Lee SH; Yun H Chem Commun (Camb); 2011 May; 47(20):5894-6. PubMed ID: 21487615 [TBL] [Abstract][Full Text] [Related]
20. Synthesis of (R)- or (S)-valinol using ω-transaminases in aqueous and organic media. Fuchs CS; Simon RC; Riethorst W; Zepeck F; Kroutil W Bioorg Med Chem; 2014 Oct; 22(20):5558-62. PubMed ID: 24951100 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]