These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 30554025)

  • 1. Chemical induced conversion of mouse fibroblasts and human adipose-derived stem cells into skeletal muscle-like cells.
    Bansal V; De D; An J; Kang TM; Jeong HJ; Kang JS; Kim KK
    Biomaterials; 2019 Feb; 193():30-46. PubMed ID: 30554025
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pharmacological Reprogramming of Somatic Cells for Regenerative Medicine.
    Xie M; Tang S; Li K; Ding S
    Acc Chem Res; 2017 May; 50(5):1202-1211. PubMed ID: 28453285
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct conversion of mouse embryonic fibroblasts into functional keratinocytes through transient expression of pluripotency-related genes.
    Iacovides D; Rizki G; Lapathitis G; Strati K
    Stem Cell Res Ther; 2016 Jul; 7(1):98. PubMed ID: 27473056
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct conversion of porcine embryonic fibroblasts into adipocytes by chemical molecules.
    Zhu J; Pang D; Zhou Y; Tang X; Huang Y; Xie W; Gao F; Lai L; Zhang M; Ouyang H
    Cell Reprogram; 2012 Apr; 14(2):99-105. PubMed ID: 22372576
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct Conversion of Human Fibroblasts into Adipocytes Using a Novel Small Molecular Compound: Implications for Regenerative Therapy for Adipose Tissue Defects.
    Sowa Y; Kishida T; Louis F; Sawai S; Seki M; Numajiri T; Takahashi K; Mazda O
    Cells; 2021 Mar; 10(3):. PubMed ID: 33803331
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical compound-based direct reprogramming for future clinical applications.
    Takeda Y; Harada Y; Yoshikawa T; Dai P
    Biosci Rep; 2018 Jun; 38(3):. PubMed ID: 29739872
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced MyoD-induced transdifferentiation to a myogenic lineage by fusion to a potent transactivation domain.
    Kabadi AM; Thakore PI; Vockley CM; Ousterout DG; Gibson TM; Guilak F; Reddy TE; Gersbach CA
    ACS Synth Biol; 2015 Jun; 4(6):689-99. PubMed ID: 25494287
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering cell fate: Spotlight on cell-activation and signaling-directed lineage conversion.
    Ebrahimi B
    Tissue Cell; 2016 Oct; 48(5):475-87. PubMed ID: 27514850
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reprogramming of mouse fibroblasts to an intermediate state of differentiation by chemical induction.
    Park J; Kim C; Tang Y; Amano T; Lin CJ; Tian XC
    Cell Reprogram; 2011 Apr; 13(2):121-31. PubMed ID: 21473689
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of galectin-1 on the differentiation of fibroblasts and myoblasts in vitro.
    Goldring K; Jones GE; Thiagarajah R; Watt DJ
    J Cell Sci; 2002 Jan; 115(Pt 2):355-66. PubMed ID: 11839787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Directed Myogenic Differentiation of Human Induced Pluripotent Stem Cells.
    Shoji E; Woltjen K; Sakurai H
    Methods Mol Biol; 2016; 1353():89-99. PubMed ID: 25971915
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct cardiac reprogramming: progress and challenges in basic biology and clinical applications.
    Sadahiro T; Yamanaka S; Ieda M
    Circ Res; 2015 Apr; 116(8):1378-91. PubMed ID: 25858064
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conversion of mouse fibroblasts into cardiomyocyte-like cells using small molecule treatments.
    Park G; Yoon BS; Kim YS; Choi SC; Moon JH; Kwon S; Hwang J; Yun W; Kim JH; Park CY; Lim DS; Kim YI; Oh CH; You S
    Biomaterials; 2015 Jun; 54():201-12. PubMed ID: 25907053
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Induction of pluripotent stem cells by reprogramming human ocular fibroblasts under xeno-free conditions.
    Xiong Y; Liu Y; Ge J
    Arq Bras Oftalmol; 2018; 81(5):376-383. PubMed ID: 30208139
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct reprogramming into desired cell types by defined factors.
    Ieda M
    Keio J Med; 2013; 62(3):74-82. PubMed ID: 23801083
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical reprogramming of melanocytes to skeletal muscle cells.
    Yang W; Wang Y; Du Y; Li J; Jia M; Li S; Ma R; Li C; Deng H; Hu P
    J Cachexia Sarcopenia Muscle; 2023 Apr; 14(2):903-914. PubMed ID: 36726338
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pharmacological Reprogramming of Fibroblasts into Neural Stem Cells by Signaling-Directed Transcriptional Activation.
    Zhang M; Lin YH; Sun YJ; Zhu S; Zheng J; Liu K; Cao N; Li K; Huang Y; Ding S
    Cell Stem Cell; 2016 May; 18(5):653-67. PubMed ID: 27133794
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Reprogramming of somatic cells. Problems and solutions].
    Schneider TA; Fishman VS; Liskovykh MA; Ponamartsev SV; Serov OL; Tomilin AN; Alenina N
    Tsitologiia; 2014; 56(12):869-80. PubMed ID: 25929128
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient direct conversion of human fibroblasts into myogenic lineage induced by co-transduction with MYCL and MYOD1.
    Wakao J; Kishida T; Fumino S; Kimura K; Yamamoto K; Kotani SI; Mizushima K; Naito Y; Yoshikawa T; Tajiri T; Mazda O
    Biochem Biophys Res Commun; 2017 Jun; 488(2):368-373. PubMed ID: 28501623
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ectopic expression of CITED2 prior to reprogramming, promotes and homogenises the conversion of somatic cells into induced pluripotent stem cells.
    Charneca J; Matias AC; Escapa AL; Fernandes C; Alves A; Santos JMA; Nascimento R; Bragança J
    Exp Cell Res; 2017 Sep; 358(2):290-300. PubMed ID: 28684114
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.