These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 30554351)

  • 1. The Effect of Environmental Factors on Total Arsenic Accumulation in Sarcodia suiae, Rhodophyta.
    Lee MC; Libatique MJH; Yeh SY
    Bull Environ Contam Toxicol; 2019 Mar; 102(3):385-390. PubMed ID: 30554351
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Total and inorganic arsenic biosorption by Sarcodia suiae (Rhodophyta), as affected by controlled environmental conditions.
    Libatique MJH; Lee MC; Yeh HY; Jhang FJ
    Chemosphere; 2020 Jun; 248():126084. PubMed ID: 32059333
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Light Intensity on the Mechanism of Inorganic Arsenic Accumulation and Patterns in the Red Macroalga, Sarcodia suiae.
    Libatique MJH; Lee MC; Yeh HY
    Biol Trace Elem Res; 2020 May; 195(1):291-300. PubMed ID: 31359334
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mazzaella laminarioides and Sarcothalia crispata as possible bioindicators of heavy metal contamination in the marine coastal zone of Chile.
    Encina-Montoya F; Vega-Aguayo R; Díaz O; Esse C; Nimptsch J; Muñoz-Pedreros A
    Environ Monit Assess; 2017 Oct; 189(11):584. PubMed ID: 29075883
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of Lead and Zinc Exposure on Uptake and Exudation Levels, Chlorophyll-a, and Phycobiliproteins in
    Chang CC; Tseng CC; Han TW; Barus BS; Chuech JY; Cheng SY
    Int J Environ Res Public Health; 2023 Feb; 20(4):. PubMed ID: 36833518
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increasing arsenic accumulation as an implication of climate change: a case study using red algae.
    Lee MC; Libatique MJH; Yeh HY; Chloe Lung WQ
    Bull Environ Contam Toxicol; 2022 May; 108(5):839-847. PubMed ID: 35362746
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Laboratory simulation system, using Carcinus maenas as the model organism, for assessing the impact of CO2 leakage from sub-seabed injection and storage.
    Rodríguez-Romero A; Jiménez-Tenorio N; Riba I; Blasco J
    Environ Res; 2016 Jan; 144(Pt A):117-129. PubMed ID: 26599590
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of Cadmium on Bioaccumulation, Bioabsorption, and Photosynthesis in
    Han TW; Tseng CC; Cai M; Chen K; Cheng SY; Wang J
    Int J Environ Res Public Health; 2020 Feb; 17(4):. PubMed ID: 32085376
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioremoval of heavy metals from industrial effluent by fixed-bed column of red macroalgae.
    Ibrahim WM; Mutawie HH
    Toxicol Ind Health; 2013 Feb; 29(1):38-42. PubMed ID: 22661401
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of heavy metals on growth and arsenic accumulation in the arsenic hyperaccumulator Pteris vittata L.
    Fayiga AO; Ma LQ; Cao X; Rathinasabapathi B
    Environ Pollut; 2004 Nov; 132(2):289-96. PubMed ID: 15312941
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of the sea hare (Aplysia fasciata) in marine pollution biomonitoring of harbors and bays.
    Dirrigl FJ; Badaoui Z; Tamez C; Vitek CJ; Parsons JG
    Mar Pollut Bull; 2018 Apr; 129(2):681-688. PubMed ID: 29110893
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioaccumulation of heavy metals in marine organisms from the Romanian sector of the Black Sea.
    Jitar O; Teodosiu C; Oros A; Plavan G; Nicoara M
    N Biotechnol; 2015 May; 32(3):369-78. PubMed ID: 25500720
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arsenic species uptake and subcellular distribution in Vallisneria natans (Lour.) Hara as influenced by aquatic pH.
    Chen G; Liu X; Xu J; Brookes PC; Wu J
    Bull Environ Contam Toxicol; 2014 Apr; 92(4):478-82. PubMed ID: 24420344
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accumulation and effects of metal mixtures in two seaweed species.
    Jarvis TA; Bielmyer-Fraser GK
    Comp Biochem Physiol C Toxicol Pharmacol; 2015 May; 171():28-33. PubMed ID: 25814321
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Short-term influence of phosphate and nitrate on heavy metal accumulation by red alga Acrosorium uncinatum.
    Sivakumar S; Song YC; Park IS; Cho SH; Lee CY; Kim BG
    Environ Monit Assess; 2010 Jun; 165(1-4):449-60. PubMed ID: 19421882
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removal processes for arsenic in constructed wetlands.
    Lizama A K; Fletcher TD; Sun G
    Chemosphere; 2011 Aug; 84(8):1032-43. PubMed ID: 21549410
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Scientometric Analysis of Recent Literature on Arsenic Bioaccumulation and Biotransformation in Marine Ecosystems.
    Li C; Zhong H; Zhang W
    Bull Environ Contam Toxicol; 2020 May; 104(5):551-558. PubMed ID: 32285138
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arsenic in rice agrosystems (water, soil and rice plants) in Guayas and Los Ríos provinces, Ecuador.
    Otero XL; Tierra W; Atiaga O; Guanoluisa D; Nunes LM; Ferreira TO; Ruales J
    Sci Total Environ; 2016 Dec; 573():778-787. PubMed ID: 27592465
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ocean warming and copper pollution: implications for metabolic compounds of the agarophyte Gelidium floridanum (Gelidiales, Rhodophyta).
    Kreusch M; Poltronieri E; Bouvie F; Batista D; Pereira DT; Ramlov F; Maraschin M; Bouzon ZL; Schmidt ÉC; Simioni C
    J Phycol; 2018 Dec; 54(6):870-878. PubMed ID: 30276817
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metals sorption from aqueous solutions by Kluyveromyces marxianus: process optimization, equilibrium modeling and chemical characterization.
    Pal R; Tewari S; Rai JP
    Biotechnol J; 2009 Oct; 4(10):1471-8. PubMed ID: 19557798
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.