BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 30554415)

  • 1. The action mechanism and biocontrol potentiality of novel isolates of Saccharomyces cerevisiae against the aflatoxigenic Aspergillus flavus.
    Abdel-Kareem MM; Rasmey AM; Zohri AA
    Lett Appl Microbiol; 2019 Feb; 68(2):104-111. PubMed ID: 30554415
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biocontrol potential of native yeast strains against
    Moradi M; Rohani M; Fani SR; Mosavian MTH; Probst C; Khodaygan P
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2020 Nov; 37(11):1963-1973. PubMed ID: 32897822
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potential of
    Ren X; Branà MT; Haidukowski M; Gallo A; Zhang Q; Logrieco AF; Li P; Zhao S; Altomare C
    Toxins (Basel); 2022 Jan; 14(2):. PubMed ID: 35202114
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization and competitive ability of non-aflatoxigenic Aspergillus flavus isolated from the maize agro-ecosystem in Argentina as potential aflatoxin biocontrol agents.
    Alaniz Zanon MS; Clemente MP; Chulze SN
    Int J Food Microbiol; 2018 Jul; 277():58-63. PubMed ID: 29684766
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro interaction of actinomycetes isolates with Aspergillus flavus: impact on aflatoxins B1 and B2 production.
    Verheecke C; Liboz T; Darriet M; Sabaou N; Mathieu F
    Lett Appl Microbiol; 2014 Jun; 58(6):597-603. PubMed ID: 24698210
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of extrolites secreted by nonaflatoxigenic Aspergillus flavus in biocontrol efficacy.
    Moore GG; Lebar MD; Carter-Wientjes CH
    J Appl Microbiol; 2019 Apr; 126(4):1257-1264. PubMed ID: 30548988
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genes differentially expressed by Aspergillus flavus strains after loss of aflatoxin production by serial transfers.
    Chang PK; Wilkinson JR; Horn BW; Yu J; Bhatnagar D; Cleveland TE
    Appl Microbiol Biotechnol; 2007 Dec; 77(4):917-25. PubMed ID: 17955191
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of aflatoxin biosynthesis. 2 Comparative study of tricarboxylic acid cycle in aflatoxigenic and non-aflatoxigenic strains of Aspergillus flavus.
    Gupta SK; Maggon KK; Venkitasubramanian TA
    Microbios; 1977; 19(75):7-15. PubMed ID: 99644
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biocontrol activity of volatile organic compounds from Streptomyces alboflavus TD-1 against Aspergillus flavus growth and aflatoxin production.
    Yang M; Lu L; Pang J; Hu Y; Guo Q; Li Z; Wu S; Liu H; Wang C
    J Microbiol; 2019 May; 57(5):396-404. PubMed ID: 31062286
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Effects of fatty acids and oxylipins on fungal growth, sporulation and aflatoxin production in Aspergillus].
    Yan S; Huang W; Liu CM
    Wei Sheng Wu Xue Bao; 2017 Jan; 57(1):24-32. PubMed ID: 29746057
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cocoa-associated filamentous fungi for the biocontrol of aflatoxigenic Aspergillus flavus.
    Oduro-Mensah D; Lowor ST; Bukari Y; Donkor JK; Minnah B; Nuhu AH; Dontoh D; Amadu AA; Ocloo A
    J Basic Microbiol; 2023 Nov; 63(11):1279-1292. PubMed ID: 37485741
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molasses supplementation promotes conidiation but suppresses aflatoxin production by small sclerotial Aspergillus flavus.
    Chang PK; Hua SS
    Lett Appl Microbiol; 2007 Feb; 44(2):131-7. PubMed ID: 17257250
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Morphological and Transcriptomic Analysis of the Inhibitory Effects of
    Zhao Y; Zhang C; Folly YME; Chang J; Wang Y; Zhou L; Zhang H; Liu Y
    Toxins (Basel); 2019 Nov; 11(11):. PubMed ID: 31683906
    [No Abstract]   [Full Text] [Related]  

  • 14. Suppression of Aflatoxin Biosynthesis in Aspergillus flavus by 2-Phenylethanol Is Associated with Stimulated Growth and Decreased Degradation of Branched-Chain Amino Acids.
    Chang PK; Hua SS; Sarreal SB; Li RW
    Toxins (Basel); 2015 Sep; 7(10):3887-902. PubMed ID: 26404375
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Considerations on the distribution of aflatoxigenic Aspergillus flavus in feeds.
    Moreno MA; Pro MJ; Olivares A; Suarez G
    Mycopathologia; 1988 Dec; 104(3):149-51. PubMed ID: 3148863
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Loss of msnA, a putative stress regulatory gene, in Aspergillus parasiticus and Aspergillus flavus increased production of conidia, aflatoxins and kojic acid.
    Chang PK; Scharfenstein LL; Luo M; Mahoney N; Molyneux RJ; Yu J; Brown RL; Campbell BC
    Toxins (Basel); 2011 Jan; 3(1):82-104. PubMed ID: 22069691
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of inhibition of aflatoxin synthesis by non-aflatoxigenic strains of Aspergillus flavus.
    Raksha Rao K; Vipin AV; Venkateswaran G
    Microb Pathog; 2020 Oct; 147():104280. PubMed ID: 32505654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production of sclerotia by aflatoxigenic and nonaflatoxigenic strains of Aspergillus flavus and A. parasiticus.
    Bennett JW; Horowitz PC; Lee LS
    Mycologia; 1979; 71(2):415-22. PubMed ID: 114828
    [No Abstract]   [Full Text] [Related]  

  • 19. Elucidation of the functional genomics of antioxidant-based inhibition of aflatoxin biosynthesis.
    Kim JH; Yu J; Mahoney N; Chan KL; Molyneux RJ; Varga J; Bhatnagar D; Cleveland TE; Nierman WC; Campbell BC
    Int J Food Microbiol; 2008 Feb; 122(1-2):49-60. PubMed ID: 18166238
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Volatiles of antagonistic soil yeasts inhibit growth and aflatoxin production of Aspergillus flavus.
    Natarajan S; Balachandar D; Senthil N; Velazhahan R; Paranidharan V
    Microbiol Res; 2022 Oct; 263():127150. PubMed ID: 35940109
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.