These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 30554999)

  • 1. Drosophila HNF4 Directs a Switch in Lipid Metabolism that Supports the Transition to Adulthood.
    Storelli G; Nam HJ; Simcox J; Villanueva CJ; Thummel CS
    Dev Cell; 2019 Jan; 48(2):200-214.e6. PubMed ID: 30554999
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Drosophila HNF4 acts in distinct tissues to direct a switch between lipid storage and export in the gut.
    Vonolfen MC; Meyer Zu Altenschildesche FL; Nam HJ; Brodesser S; Gyenis A; Buellesbach J; Lam G; Thummel CS; Storelli G
    Cell Rep; 2024 Sep; 43(9):114693. PubMed ID: 39235946
    [TBL] [Abstract][Full Text] [Related]  

  • 3. dHNF4 regulates lipid homeostasis and oogenesis in Drosophila melanogaster.
    Almeida-Oliveira F; Tuthill BF; Gondim KC; Majerowicz D; Musselman LP
    Insect Biochem Mol Biol; 2021 Jun; 133():103569. PubMed ID: 33753225
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Drosophila HNF4 regulates lipid mobilization and beta-oxidation.
    Palanker L; Tennessen JM; Lam G; Thummel CS
    Cell Metab; 2009 Mar; 9(3):228-39. PubMed ID: 19254568
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Drosophila HNF4 nuclear receptor promotes glucose-stimulated insulin secretion and mitochondrial function in adults.
    Barry WE; Thummel CS
    Elife; 2016 May; 5():. PubMed ID: 27185732
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sir2 Acts through Hepatocyte Nuclear Factor 4 to maintain insulin Signaling and Metabolic Homeostasis in Drosophila.
    Palu RA; Thummel CS
    PLoS Genet; 2016 Apr; 12(4):e1005978. PubMed ID: 27058248
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flexible origin of hydrocarbon/pheromone precursors in Drosophila melanogaster.
    Wicker-Thomas C; Garrido D; Bontonou G; Napal L; Mazuras N; Denis B; Rubin T; Parvy JP; Montagne J
    J Lipid Res; 2015 Nov; 56(11):2094-101. PubMed ID: 26353752
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hepatocyte-Specific Hepatocyte Nuclear Factor 4 Alpha (HNF4) Deletion Decreases Resting Energy Expenditure by Disrupting Lipid and Carbohydrate Homeostasis.
    Huck I; Morris EM; Thyfault J; Apte U
    Gene Expr; 2021 Jun; 20(3):157-168. PubMed ID: 33691903
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A modified tandem affinity purification strategy identifies cofactors of the Drosophila nuclear receptor dHNF4.
    Yang P; Sampson HM; Krause HM
    Proteomics; 2006 Feb; 6(3):927-35. PubMed ID: 16400689
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The contribution of the Drosophila model to lipid droplet research.
    Kühnlein RP
    Prog Lipid Res; 2011 Oct; 50(4):348-56. PubMed ID: 21620889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lipid storage regulator CdsA is essential for Drosophila metamorphosis.
    Liu Y; Ji Y; Li X; Shui G; Huang X
    J Genet Genomics; 2019 Apr; 46(4):231-234. PubMed ID: 31072795
    [No Abstract]   [Full Text] [Related]  

  • 12. Cyp1b1 affects external control of mouse hepatocytes, fatty acid homeostasis and signaling involving HNF4α and PPARα.
    Bushkofsky JR; Maguire M; Larsen MC; Fong YH; Jefcoate CR
    Arch Biochem Biophys; 2016 May; 597():30-47. PubMed ID: 27036855
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Drosophila melanogaster Acetyl-CoA-carboxylase sustains a fatty acid-dependent remote signal to waterproof the respiratory system.
    Parvy JP; Napal L; Rubin T; Poidevin M; Perrin L; Wicker-Thomas C; Montagne J
    PLoS Genet; 2012; 8(8):e1002925. PubMed ID: 22956916
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Beebe K; Robins MM; Hernandez EJ; Lam G; Horner MA; Thummel CS
    Genes Dev; 2020 May; 34(9-10):701-714. PubMed ID: 32165409
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physiological and pathological roles of FATP-mediated lipid droplets in Drosophila and mice retina.
    Van Den Brink DM; Cubizolle A; Chatelain G; Davoust N; Girard V; Johansen S; Napoletano F; Dourlen P; Guillou L; Angebault-Prouteau C; Bernoud-Hubac N; Guichardant M; Brabet P; Mollereau B
    PLoS Genet; 2018 Sep; 14(9):e1007627. PubMed ID: 30199545
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Misregulation of an adaptive metabolic response contributes to the age-related disruption of lipid homeostasis in Drosophila.
    Karpac J; Biteau B; Jasper H
    Cell Rep; 2013 Sep; 4(6):1250-61. PubMed ID: 24035390
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Muscle Directs Diurnal Energy Homeostasis through a Myokine-Dependent Hormone Module in Drosophila.
    Zhao X; Karpac J
    Curr Biol; 2017 Jul; 27(13):1941-1955.e6. PubMed ID: 28669758
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physiological Adaptations to Sugar Intake: New Paradigms from Drosophila melanogaster.
    Chng WA; Hietakangas V; Lemaitre B
    Trends Endocrinol Metab; 2017 Feb; 28(2):131-142. PubMed ID: 27923532
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Towards understanding regulation of energy homeostasis by ceramide synthases.
    Bauer R
    Results Probl Cell Differ; 2010; 52():175-81. PubMed ID: 20865380
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glial β-oxidation regulates Drosophila energy metabolism.
    Schulz JG; Laranjeira A; Van Huffel L; Gärtner A; Vilain S; Bastianen J; Van Veldhoven PP; Dotti CG
    Sci Rep; 2015 Jan; 5():7805. PubMed ID: 25588812
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.