BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 30555060)

  • 1. MiR-27b promotes sheep skeletal muscle satellite cell proliferation by targeting
    Zhang W; Wang SY; Deng SY; Gao L; Yang LW; Liu XN; Shi GQ
    J Genet; 2018 Dec; 97(5):1107-1117. PubMed ID: 30555060
    [TBL] [Abstract][Full Text] [Related]  

  • 2. miR-27b regulates myogenic proliferation and differentiation by targeting Pax3 in goat.
    Ling YH; Sui MH; Zheng Q; Wang KY; Wu H; Li WY; Liu Y; Chu MX; Fang FG; Xu LN
    Sci Rep; 2018 Mar; 8(1):3909. PubMed ID: 29500394
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MiR-27b Promotes Muscle Development by Inhibiting MDFI Expression.
    Hou L; Xu J; Jiao Y; Li H; Pan Z; Duan J; Gu T; Hu C; Wang C
    Cell Physiol Biochem; 2018; 46(6):2271-2283. PubMed ID: 29734192
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MicroRNA-27b-3p Targets the Myostatin Gene to Regulate Myoblast Proliferation and Is Involved in Myoblast Differentiation.
    Zhang G; He M; Wu P; Zhang X; Zhou K; Li T; Zhang T; Xie K; Dai G; Wang J
    Cells; 2021 Feb; 10(2):. PubMed ID: 33671389
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Myostatin knockout using zinc-finger nucleases promotes proliferation of ovine primary satellite cells in vitro.
    Salabi F; Nazari M; Chen Q; Nimal J; Tong J; Cao WG
    J Biotechnol; 2014 Dec; 192 Pt A():268-80. PubMed ID: 25449018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Negative auto-regulation of myostatin expression is mediated by Smad3 and microRNA-27.
    McFarlane C; Vajjala A; Arigela H; Lokireddy S; Ge X; Bonala S; Manickam R; Kambadur R; Sharma M
    PLoS One; 2014; 9(1):e87687. PubMed ID: 24498167
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional effect of mir-27b on myostatin expression: a relationship in Piedmontese cattle with double-muscled phenotype.
    Miretti S; Martignani E; Accornero P; Baratta M
    BMC Genomics; 2013 Mar; 14():194. PubMed ID: 23510267
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Posttranscriptional mechanisms involving microRNA-27a and b contribute to fast-specific and glucocorticoid-mediated myostatin expression in skeletal muscle.
    Allen DL; Loh AS
    Am J Physiol Cell Physiol; 2011 Jan; 300(1):C124-37. PubMed ID: 20980549
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Muscle stem cell behavior is modified by microRNA-27 regulation of Pax3 expression.
    Crist CG; Montarras D; Pallafacchina G; Rocancourt D; Cumano A; Conway SJ; Buckingham M
    Proc Natl Acad Sci U S A; 2009 Aug; 106(32):13383-7. PubMed ID: 19666532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of miR-2400 gene as a novel regulator in skeletal muscle satellite cells proliferation by targeting MYOG gene.
    Zhang WW; Tong HL; Sun XF; Hu Q; Yang Y; Li SF; Yan YQ; Li GP
    Biochem Biophys Res Commun; 2015 Aug; 463(4):624-31. PubMed ID: 26047700
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MicroRNA-128 regulates the proliferation and differentiation of bovine skeletal muscle satellite cells by repressing Sp1.
    Dai Y; Zhang WR; Wang YM; Liu XF; Li X; Ding XB; Guo H
    Mol Cell Biochem; 2016 Mar; 414(1-2):37-46. PubMed ID: 26833195
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MicroRNA-128 targets myostatin at coding domain sequence to regulate myoblasts in skeletal muscle development.
    Shi L; Zhou B; Li P; Schinckel AP; Liang T; Wang H; Li H; Fu L; Chu Q; Huang R
    Cell Signal; 2015 Sep; 27(9):1895-904. PubMed ID: 25958325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. miR-30e is negatively regulated by myostatin in skeletal muscle and is functionally related to fiber-type composition.
    Jia H; Zhao Y; Li T; Zhang Y; Zhu D
    Acta Biochim Biophys Sin (Shanghai); 2017 May; 49(5):392-399. PubMed ID: 28338991
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sulforaphane causes a major epigenetic repression of myostatin in porcine satellite cells.
    Fan H; Zhang R; Tesfaye D; Tholen E; Looft C; Hölker M; Schellander K; Cinar MU
    Epigenetics; 2012 Dec; 7(12):1379-90. PubMed ID: 23092945
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PPARγ and MyoD are differentially regulated by myostatin in adipose-derived stem cells and muscle satellite cells.
    Zhang F; Deng B; Wen J; Chen K; Liu W; Ye S; Huang H; Jiang S; Xiong Y
    Biochem Biophys Res Commun; 2015 Mar; 458(2):375-80. PubMed ID: 25646693
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High concentrations of HGF inhibit skeletal muscle satellite cell proliferation in vitro by inducing expression of myostatin: a possible mechanism for reestablishing satellite cell quiescence in vivo.
    Yamada M; Tatsumi R; Yamanouchi K; Hosoyama T; Shiratsuchi S; Sato A; Mizunoya W; Ikeuchi Y; Furuse M; Allen RE
    Am J Physiol Cell Physiol; 2010 Mar; 298(3):C465-76. PubMed ID: 20007454
    [TBL] [Abstract][Full Text] [Related]  

  • 17. miR-143 regulates proliferation and differentiation of bovine skeletal muscle satellite cells by targeting IGFBP5.
    Zhang WR; Zhang HN; Wang YM; Dai Y; Liu XF; Li X; Ding XB; Guo H
    In Vitro Cell Dev Biol Anim; 2017 Mar; 53(3):265-271. PubMed ID: 27800570
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of microRNA-1 and microRNA-206 in the proliferation and differentiation of bovine skeletal muscle satellite cells.
    Dai Y; Wang YM; Zhang WR; Liu XF; Li X; Ding XB; Guo H
    In Vitro Cell Dev Biol Anim; 2016 Jan; 52(1):27-34. PubMed ID: 26424132
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrated Analyses Reveal Overexpressed Notch1 Promoting Porcine Satellite Cells' Proliferation through Regulating the Cell Cycle.
    Jiao Y; Huang B; Chen Y; Hong G; Xu J; Hu C; Wang C
    Int J Mol Sci; 2018 Jan; 19(1):. PubMed ID: 29337929
    [TBL] [Abstract][Full Text] [Related]  

  • 20. lnc133b, a novel, long non-coding RNA, regulates bovine skeletal muscle satellite cell proliferation and differentiation by mediating miR-133b.
    Jin CF; Li Y; Ding XB; Li X; Zhang LL; Liu XF; Guo H
    Gene; 2017 Sep; 630():35-43. PubMed ID: 28757453
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.