These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 30555195)

  • 1. WHERE HAS ALL THE POWER GONE? ENERGY PRODUCTION AND LOSS IN VOCALIZATION.
    Titze IR
    Speech Commun; 2018 Jul; 101():26-33. PubMed ID: 30555195
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Oral Pressure Conversion Ratio as a Predictor of Vocal Efficiency.
    Titze IR; Maxfield L; Palaparthi A
    J Voice; 2016 Jul; 30(4):398-406. PubMed ID: 26164123
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vocal efficiency in tracheoesophageal phonation.
    Grolman W; Eerenstein SE; Tange RA; Canu G; Bogaardt H; Dijkhuis JP; Dreschler WA; Schouwenburg PF
    Auris Nasus Larynx; 2008 Mar; 35(1):83-8. PubMed ID: 17959326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of phonatory efficiency by vocal fold tension and glottic width in the excised canine larynx.
    Slavit DH; McCaffrey TV
    Ann Otol Rhinol Laryngol; 1991 Aug; 100(8):668-77. PubMed ID: 1872519
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aerodynamic and acoustic features of vocal effort.
    Rosenthal AL; Lowell SY; Colton RH
    J Voice; 2014 Mar; 28(2):144-53. PubMed ID: 24412040
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurement of vocal doses in speech: experimental procedure and signal processing.
    Svec JG; Popolo PS; Titze IR
    Logoped Phoniatr Vocol; 2003; 28(4):181-92. PubMed ID: 14686546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vocal efficiency as a function of vocal intensity: a study of children, women, and men.
    Tang J; Stathopoulos ET
    J Acoust Soc Am; 1995 Mar; 97(3):1885-92. PubMed ID: 7699170
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The minimum glottal airflow to initiate vocal fold oscillation.
    Jiang JJ; Tao C
    J Acoust Soc Am; 2007 May; 121(5 Pt1):2873-81. PubMed ID: 17550186
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vocal dose measures: quantifying accumulated vibration exposure in vocal fold tissues.
    Titze IR; Svec JG; Popolo PS
    J Speech Lang Hear Res; 2003 Aug; 46(4):919-32. PubMed ID: 12959470
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationships between vocal intensity and noninvasively obtained aerodynamic parameters in normal subjects.
    Tanaka S; Gould WJ
    J Acoust Soc Am; 1983 Apr; 73(4):1316-21. PubMed ID: 6853843
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of Effects Produced by Physiological Versus Traditional Vocal Warm-up in Contemporary Commercial Music Singers.
    Portillo MP; Rojas S; Guzman M; Quezada C
    J Voice; 2018 Mar; 32(2):200-208. PubMed ID: 28579159
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational aeroacoustics of phonation, part I: Computational methods and sound generation mechanisms.
    Zhao W; Zhang C; Frankel SH; Mongeau L
    J Acoust Soc Am; 2002 Nov; 112(5 Pt 1):2134-46. PubMed ID: 12430825
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aerodynamic Characteristics of Syllable and Sentence Productions in Normal Speakers.
    Thiel C; Yang J; Crawley B; Krishna P; Murry T
    J Voice; 2019 May; 33(3):297-301. PubMed ID: 29326024
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental verification of the quasi-steady approximation for aerodynamic sound generation by pulsating jets in tubes.
    Zhang Z; Mongeau L; Frankel SH
    J Acoust Soc Am; 2002 Oct; 112(4):1652-63. PubMed ID: 12398470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Test-retest reliability for aerodynamic measures of voice.
    Awan SN; Novaleski CK; Yingling JR
    J Voice; 2013 Nov; 27(6):674-84. PubMed ID: 24119644
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vocalization with semi-occluded airways is favorable for optimizing sound production.
    Titze IR; Palaparthi A; Cox K; Stark A; Maxfield L; Manternach B
    PLoS Comput Biol; 2021 Mar; 17(3):e1008744. PubMed ID: 33780433
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Responses of Middle-Frequency Modulations in Vocal Fundamental Frequency to Different Vocal Intensities and Auditory Feedback.
    Lee SH; Fang TJ; Yu JF; Lee GS
    J Voice; 2017 Sep; 31(5):536-544. PubMed ID: 28268129
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Frequencies, bandwidths and magnitudes of vocal tract and surrounding tissue resonances, measured through the lips during phonation.
    Hanna N; Smith J; Wolfe J
    J Acoust Soc Am; 2016 May; 139(5):2924. PubMed ID: 27250184
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimating subglottal pressure via airflow redirection.
    Baggott CD; Yuen AK; Hoffman MR; Zhou L; Jiang JJ
    Laryngoscope; 2007 Aug; 117(8):1491-5. PubMed ID: 17762273
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aerodynamic and sound intensity measurements in tracheoesophageal voice.
    Grolman W; Eerenstein SE; Tan FM; Tange RA; Schouwenburg PF
    ORL J Otorhinolaryngol Relat Spec; 2007; 69(2):68-76. PubMed ID: 17127821
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.